Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X and Y be random variables for which the jointp.d.f. is as follows:

\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}{\bf{2}}\left( {{\bf{x + y}}} \right)\;\;\;\;\;\;\;\;\;\;{\bf{for}}\;{\bf{0}} \le {\bf{x}} \le {\bf{y}} \le {\bf{1,}}\\{\bf{0}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\bf{otherwise}}\end{array} \right.\)

Find the p.d.f. of Z = X + Y.

Short Answer

Expert verified

The pdf is \({f_Z}\left( z \right) = \left\{ \begin{array}{l}{z^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{for}}\;0 \le z \le 1\\z\left( {2 - z} \right)\;\;\;\;\;\;\;\;\;{\rm{for}}\;1 < z < 2\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

Step by step solution

01

Given information

The given p.d.f is

\(f\left( {x,y} \right) = \left\{ \begin{array}{l}2\left( {x + y} \right)\;\;\;\;\;\;\;{\rm{for}}\;0 \le x \le y \le 1,\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}\end{array} \right.\)

02

Define convolution rule

Convolution rule:Let \({X_1}\;and\;{X_2}\) be two independent random variables with their respective p.d.f. defined by \({f_X}\left( x \right)\)and \({f_Y}\left( y \right)\).

Let \({\bf{Z = X + Y}}\). The newly defined variable Z is convolution of distribution of X and Y.

The p.d.f of Z is

\(\begin{aligned}{f_Z}\left( z \right) &= \int_{ - \infty }^\infty {{f_x}} \left( {z - y} \right){f_Y}\left( y \right)dy\\ &= \int_{ - \infty }^\infty {{f_x}\left( {z - y,y} \right)} dy\end{aligned}\)

03

Apply Convolution rule evaluate the pdf

The positive region for the given interval is for \(0 \le z - t \le z \le 1\). So,for \(0 \le z \le 1\) it is positive only when \(\frac{z}{2} \le t \le z\),

\(\begin{aligned}{f_Z}\left( z \right) &= \int\limits_y^{} {{f_y}\left( z \right)} dt\\ &= \int\limits_{\frac{z}{2}}^z {2z} dt\,\\ &= 2z\left( {z - \frac{z}{2}} \right)\\ &= {z^2}\end{aligned}\)

For\(1 < z < 2\), the positive integrand lies in \(\frac{z}{2} \le t \le 1\). Thus,

\(\begin{aligned}{f_Z}\left( z \right) &= \int\limits_t^{} {{f_y}\left( z \right)} dyt\\ &= \int\limits_{\frac{z}{2}}^1 {2z} dt\,\,\,\\ &= 2z\left( {1 - \frac{z}{2}} \right)\\ &= z\left( {2 - z} \right)\end{aligned}\)

Therefore, the pdf of \({\bf{Z}} = {\bf{X}} + {\bf{Y}}\)

\({f_Z}\left( z \right) = \left\{ \begin{array}{l}{z^2},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0 \le z \le 1\\z\left( {2 - z} \right),\;\;\;\;\;\;\;1 < z < 2\\0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Suppose thatXandYhave a discrete joint distributionfor which the joint p.f. is defined as follows:

\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{1}}}{{{\bf{30}}}}\left( {{\bf{x + y}}} \right)\;{\bf{for}}\;{\bf{x = 0,1,2}}\;{\bf{and}}\;{\bf{y = 0,1,2,3}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

a. Determine the marginal p.f.โ€™s ofXandY.

b. AreXandYindependent?

Question:Suppose thatXandYare random variables such that(X, Y)must belong to the rectangle in thexy-plane containing all points(x, y)for which 0โ‰คxโ‰ค3 and 0โ‰คyโ‰ค4. Suppose also that the joint c.d.f. ofXandYat every point

(x,y) in this rectangle is specified as follows:

\({\bf{F}}\left( {{\bf{x,y}}} \right){\bf{ = }}\frac{{\bf{1}}}{{{\bf{156}}}}{\bf{xy}}\left( {{{\bf{x}}^{\bf{2}}}{\bf{ + y}}} \right)\)

Determine

(a) Pr(1โ‰คXโ‰ค2 and 1โ‰คYโ‰ค2);

(b) Pr(2โ‰คXโ‰ค4 and 2โ‰คYโ‰ค4);

(c) the c.d.f. ofY;

(d) the joint p.d.f. ofXandY;

(e) Pr(Yโ‰คX).

Suppose that\({X_1}....{X_n}\)are i.i.d. random variables, each having the following c.d.f.:\(F\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x \le 0\\1 - {e^{ - x}}\,\,\,for\,x > 0\end{array} \right.\)

Let\({Y_1} = min\left\{ {{X_1},{X_2}..{X_n}} \right\}\)and\({Y_n} = max\left\{ {{X_{1,}}{X_2}..{X_n}} \right\}\)Determine the conditional p.d.f. of\({Y_1}\)given that\({Y_n} = {y_n}\)

Verify the rows of the transition matrix in Example 3.10.6 that correspond to current states\(\left\{ {AA,Aa} \right\}\)and\(\left\{ {Aa,aa} \right\}\)

Suppose that a random variableXhas a discrete distribution

with the following p.f.:

\(f\left( x \right) = \left\{ \begin{array}{l}cx\;\;for\;x = 1,...,5,\\0\;\;\;\;otherwise\end{array} \right.\)

Determine the value of the constantc.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free