Chapter 3: Q6E (page 187)
Let X and Y be random variables for which the jointp.d.f. is as follows:
\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}{\bf{2}}\left( {{\bf{x + y}}} \right)\;\;\;\;\;\;\;\;\;\;{\bf{for}}\;{\bf{0}} \le {\bf{x}} \le {\bf{y}} \le {\bf{1,}}\\{\bf{0}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\bf{otherwise}}\end{array} \right.\)
Find the p.d.f. of Z = X + Y.
Short Answer
The pdf is \({f_Z}\left( z \right) = \left\{ \begin{array}{l}{z^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{for}}\;0 \le z \le 1\\z\left( {2 - z} \right)\;\;\;\;\;\;\;\;\;{\rm{for}}\;1 < z < 2\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)