The definition of the conditional p.d.f. of X given\({\bf{Y = y}}\)is arbitrary if\({{\bf{f}}_{\bf{2}}}\left( {\bf{y}} \right){\bf{ = 0}}\). The reason that this causes no serious problem is that it is highly unlikely that we will observe Y close to a value\({{\bf{y}}_{\bf{0}}}\)such that\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{0}}}} \right){\bf{ = 0}}\). To be more precise, let\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{0}}}} \right){\bf{ = 0}}\), and let\({{\bf{A}}_{\bf{0}}}{\bf{ = }}\left( {{{\bf{y}}_{\bf{0}}}{\bf{ - }} \in {\bf{,}}{{\bf{y}}_{\bf{0}}}{\bf{ + }} \in } \right)\). Also, let\({{\bf{y}}_{\bf{1}}}\)be such that\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{1}}}} \right){\bf{ > 0}}\), and let\({{\bf{A}}_{\bf{1}}}{\bf{ = }}\left( {{{\bf{y}}_{\bf{1}}}{\bf{ - }} \in {\bf{,}}{{\bf{y}}_{\bf{1}}}{\bf{ + }} \in } \right)\). Assume that\({{\bf{f}}_{\bf{2}}}\)is continuous at both\({{\bf{y}}_{\bf{0}}}\)and\({{\bf{y}}_{\bf{1}}}\).
Show that
\(\mathop {{\bf{lim}}}\limits_{ \in \to {\bf{0}}} \,\frac{{{\bf{Pr}}\left( {{\bf{Y}} \in {{\bf{A}}_{\bf{0}}}} \right)}}{{{\bf{Pr}}\left( {{\bf{Y}} \in {{\bf{A}}_{\bf{1}}}} \right)}}{\bf{ = 0}}{\bf{.}}\)
That is, the probability that Y is close to\({{\bf{y}}_{\bf{0}}}\)is much smaller than the probability that Y is close to\({{\bf{y}}_{\bf{1}}}\).