Chapter 3: Q5E (page 140)
Question:A certain drugstore has three public telephone booths. Fori=0, 1, 2, 3, let\({{\bf{p}}_{\bf{i}}}\)denote the probability that exactlyitelephone booths will be occupied on any Monday evening at 8:00 p.m.; and suppose that\({{\bf{p}}_{\bf{0}}}\)=0.1,\({{\bf{p}}_{\bf{1}}}\)=0.2,\({{\bf{p}}_{\bf{2}}}\)=0.4, and\({{\bf{p}}_{\bf{3}}}\)=0.3. LetXandYdenote the number of booths that will be occupied at 8:00 p.m. on two independent Monday evenings. Determine:
(a) the joint p.f. ofXandY;
(b) Pr(X=Y);
(c) Pr(X > Y ).
Short Answer
- The joint p.f of X and Yis\(\Pr \left( {x,y} \right) = \left\{ \begin{array}{l}{p_x}{p_y}\;for\;x = y = 0,1,2,3\\0\;otherwise\end{array} \right.\)
- \(\Pr \left( {X = Y} \right) = 0.30\)
- \(\Pr \left( {X > Y} \right) = 0.35\)