Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the c.d.f.Fof a random variableXis as sketched in Fig. 3.9. Find each of the following probabilities:


Short Answer

Expert verified

a.0.1.

b.0.1.

c.0.2

d.0

e.0.6

f.0.4

g.0.7

h.0

i.0

j.0

k.0

l.0.2

Step by step solution

01

Given the information

A sketch for the cumulative distribution function of a random variable X is provided.

02

Compute the probability

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a coin is tossed repeatedly in such a way that heads and tails are equally likely to appear on any given toss and that all tosses are independent, with the following exception: Whenever either three heads or three tails have been obtained on three successive tosses, then the outcome of the next toss is always of the opposite type. At time\(n\left( {n \ge 3} \right)\)let the state of this process be specified by the outcomes on tosses\(n - 2\),\(n - 1\)and n. Show that this process is a Markov chain with stationary transition probabilities and construct the transition matrix.

Let X have the uniform distribution on the interval, and let prove that \({\bf{cX + d}}\) it has a uniform distribution on the interval \(\left[ {{\bf{ca + d,cb + d}}} \right]\)

Suppose that a random variableXhas a discrete distribution

with the following p.f.:

\(f\left( x \right) = \left\{ \begin{array}{l}\frac{c}{{{2^x}}}\;\;for\;x = 0,1,2,...\\0\;\;\;\;otherwise\end{array} \right.\)

Find the value of the constantc.

Suppose that three boys A, B, and C are throwing a ball from one to another. Whenever A has the ball, he throws it to B with a probability of 0.2 and to C with a probability of 0.8. Whenever B has the ball, he throws it to A with a probability of 0.6 and to C with a probability of 0.4. Whenever C has the ball, he is equally likely to throw it to either A or B.

a. Consider this process to be a Markov chain and construct the transition matrix.

b. If each of the three boys is equally likely to have the ball at a certain time n, which boy is most likely to have the ball at time\(n + 2\).

Suppose that \({{\bf{X}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}\) are i.i.d. random variables andthat each of them has a uniform distribution on theinterval [0, 1]. Find the p.d.f. of\({\bf{Y = }}{{\bf{X}}_{\bf{1}}}{\bf{ + }}{{\bf{X}}_{\bf{2}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free