Chapter 3: Q4E (page 187)
Suppose that \({{\bf{X}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}\)have a continuous joint distribution
for which the joint p.d.f. is as follows:
\[f\left( {{x_1},{x_2}} \right) = \left\{ \begin{array}{l}{x_1} + {x_2}\;for\;0 < {x_1} < 1\;and\;0 < {x_2} < 1,\\ = 0,otherwise\end{array} \right.\]
Find the p.d.f. of \({\bf{Y = }}{{\bf{X}}_{\bf{1}}}{{\bf{X}}_{\bf{2}}}\)
Short Answer
The pdf of \(Y = {X_1}{X_2}\)
\(\begin{array}{l}g\left( y \right) = 2\left( {1 - y} \right),0 < y < 1\\{\rm{Therefore,Y}} \sim {\rm{Beta}}\left( {{\rm{1,3}}} \right)\end{array}\)\(\)