Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \({{\bf{X}}_{\bf{1}}}\;{\bf{and}}\;{{\bf{X}}_{\bf{2}}}\)have a continuous joint distribution

for which the joint p.d.f. is as follows:

\[f\left( {{x_1},{x_2}} \right) = \left\{ \begin{array}{l}{x_1} + {x_2}\;for\;0 < {x_1} < 1\;and\;0 < {x_2} < 1,\\ = 0,otherwise\end{array} \right.\]

Find the p.d.f. of \({\bf{Y = }}{{\bf{X}}_{\bf{1}}}{{\bf{X}}_{\bf{2}}}\)

Short Answer

Expert verified

The pdf of \(Y = {X_1}{X_2}\)

\(\begin{array}{l}g\left( y \right) = 2\left( {1 - y} \right),0 < y < 1\\{\rm{Therefore,Y}} \sim {\rm{Beta}}\left( {{\rm{1,3}}} \right)\end{array}\)\(\)

Step by step solution

01

Given information

\(f\left( {{x_1},{x_2}} \right) = \left\{ \begin{array}{l}{x_1} + {x_2}\;for\;0 < {x_1} < 1\;and\;0 < {x_2} < 1,\\ = 0,otherwise\end{array} \right.\)

02

Define the new variables and find their range

\(\begin{array}{l}Let,\\Y = {X_1}{X_2}\\Z = \frac{{{X_1}}}{{{X_2}}}\end{array}\)

To find the range of Y and Z (both dependent and independent ranges)

Now, Clearly,

\(\)\(\begin{array}{l}0 < Y < 1\\0 < X < 1\end{array}\)

03

Find the inverse of the variables and its range

\(\begin{aligned}{x_1} &= \sqrt {yz} \\{x_2} &= \sqrt {\frac{y}{z}} \\{\rm{Since,}}\\0 < {x_1} < 1\\ &\Rightarrow 0 < \sqrt {yz} < 1 \ldots \left( 1 \right)\end{aligned}\)

\(\begin{aligned}0 < {x_2} < 1\\ &\Rightarrow 0 < \sqrt {\frac{y}{z}} < 1\\ &\Rightarrow 0 < y < z \ldots \left( 2 \right)\end{aligned}\)

04

Finding the dependent range

By combining 1 and 2, we get,

\(\begin{array}{l}When,\\0 < z < 1\\0 < y < z\\ [range\;of\;y\;dependent\;on\;z]\\and\;when,\end{array}\)

\(\begin{array}{l}z > 1,\\0 < y < \frac{1}{z}\\ \Rightarrow y < z < \frac{1}{y}\\ [range\;of\;z\;dependent\;on\;y]\end{array}\)

05

Finding the joint distribution

The joint distribution of Y as well as Z find,

\(\begin{array}{l}{x_1} = \sqrt {yz} \\{x_2} = \sqrt {\frac{y}{z}} \end{array}\)

Perform the Jacobian transformation

\(\begin{aligned}J &= \left| {\begin{aligned}{}{\frac{{\partial {x_1}}}{{\partial y}}}&{\frac{{\partial {x_1}}}{{\partial z}}}\\{\frac{{\partial {x_2}}}{{\partial y}}}&{\frac{{\partial {x_2}}}{{\partial z}}}\end{aligned}} \right|\\ &= \left| {\begin{aligned}{}{\frac{{\sqrt z }}{{2\sqrt y }}}&{\frac{{\sqrt y }}{{2\sqrt z }}}\\{\frac{1}{{2\sqrt y \sqrt z }}}&{ - \frac{{\sqrt y }}{{2z\sqrt z }}}\end{aligned}} \right|\\ &= \left| {\frac{1}{{2z}}} \right|\end{aligned}\)

The joint pdf of Y and Z is

\(\begin{aligned}{f_y}_z\left( {y,z} \right) &= {f_{{x_1}{x_2}}}\left( {{x_1} \cdot {x_2}} \right)\left| J \right|\\ &= \frac{{\sqrt y }}{{2z}}\left( {\frac{1}{{\sqrt z }} + \sqrt z } \right)\\ &= \frac{{\sqrt y }}{2}\left( {\frac{1}{{\sqrt z }} + \frac{1}{{{z^{\frac{3}{2}}}}}} \right),0 < y < 1,0 < z < \infty ,y < z < \frac{1}{y},0 < yz < 1,0 < \frac{y}{z} < 1\end{aligned}\)

06

Integrating the pdf with respect to the range of z to get the pdf of y

\(\begin{aligned}{f_Y}\left( y \right) &= \int\limits_y {{f_{yz}}\left( {y,z} \right)dz} \\ &= \int\limits_y^{\frac{1}{y}} {\frac{{\sqrt y }}{2}\left( {\frac{1}{{\sqrt z }} + \frac{1}{{{z^{\frac{3}{2}}}}}} \right)dz} \\ &= 2\left( {1 - y} \right),0 < y < 1\\{\rm{Therefore,Y}} \sim {\rm{Beta}}\left( {{\rm{1,3}}} \right)\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let the initial probability vector in Example 3.10.6 be\(v = \left( {\frac{1}{{16}},\frac{1}{4},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{1}{{16}}} \right)\)Find the probabilities of the six states after one generation.

Question:Suppose that a point (X,Y) is to be chosen from the squareSin thexy-plane containing all points (x,y) such that 0โ‰คxโ‰ค1 and 0โ‰คyโ‰ค1. Suppose that the probability that the chosen point will be the corner(0,0)is 0.1, the probability that it will be the corner(1,0)is 0.2, and the probability that it will be the corner(0,1)is 0.4, and the probability that it will be the corner(1,1)is 0.1. Suppose also that if the chosen point is not one of the four corners of the square, then it will be an interior point of the square and will be chosen according to a constant p.d.f. over the interior of the square. Determine

\(\begin{array}{l}\left( {\bf{a}} \right)\;{\bf{Pr}}\left( {{\bf{X}} \le \frac{{\bf{1}}}{{\bf{4}}}} \right)\;{\bf{and}}\\\left( {\bf{b}} \right)\;{\bf{Pr}}\left( {{\bf{X + Y}} \le {\bf{1}}} \right)\end{array}\)

Suppose that the p.d.f. of X is as given in Exercise 3.

Determine the p.d.f. of \(Y = 3X + 2\)

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\)form a random sample of nobservations from the uniform distribution on the interval(0, 1), and let Y denote the second largest of the observations.Determine the p.d.f. of Y.Hint: First, determine thec.d.f. G of Y by noting that

\(\begin{aligned}G\left( y \right) &= \Pr \left( {Y \le y} \right)\\ &= \Pr \left( {At\,\,least\,\,n - 1\,\,observations\,\, \le \,\,y} \right)\end{aligned}\)

Question:Suppose thatXandYhave a discrete joint distributionfor which the joint p.f. is defined as follows:

\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{1}}}{{{\bf{30}}}}\left( {{\bf{x + y}}} \right)\;{\bf{for}}\;{\bf{x = 0,1,2}}\;{\bf{and}}\;{\bf{y = 0,1,2,3}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

a. Determine the marginal p.f.โ€™s ofXandY.

b. AreXandYindependent?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free