First we have to find out the cdf of X
\(\begin{aligned}F\left( x \right) = \int\limits_{ - \infty }^x {f\left( z \right)dz} \\\left\{ \begin{aligned}if\,x < 0\,\,\,\,\,\,F\left( x \right) &= 0\\x \in \left[ {0,2} \right)\,\,\,\,\,F\left( x \right) &= \int\limits_{ - \infty }^x {F\left( z \right)dz} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &= \int\limits_0^x {\frac{z}{2}dz} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &= \left. {\frac{1}{2} \times \frac{{{z^2}}}{2}} \right|_0^x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &= \frac{{{x^2}}}{4}\\x \ge 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,F\left( x \right) &= 1\end{aligned} \right.\end{aligned}\)
Finding cdf of Y using cdf of X
\(\begin{aligned}G\left( y \right) &= {\rm P}\left( {Y \le y} \right)\\ &= {\rm P}\left( {3x + 2 \le y} \right)\\ &= {\rm P}\left( {x \le \frac{1}{3}\left( {y - 2} \right)} \right)\end{aligned}\)
\(G\left( y \right) = F\left( {\frac{1}{3}\left( {y - 2} \right)} \right)\)
If \(\frac{1}{3}\left( {y - 2} \right) < 0\,\,or\,y < 2\,\, \Rightarrow G\left( y \right) = 0\,\,or\,y < 2\)
If \(0 \le \frac{1}{3}\left( {y - z} \right)\,\,or\,\,z \le y < 8 \Rightarrow G\left( y \right) = \frac{1}{{36}}{\left( {y - z} \right)^2}\)
If \(\frac{1}{3}\left( {y - 2} \right) \ge 2\,or\,y \ge 8\, \Rightarrow G\left( y \right) = 1\)
Therefore, cdf of y is
\(G\left( y \right) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y < 2\\\frac{1}{{36}}\,\,\,\,\,\,\,\,\,\,\,\,z \le y < 8\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,y \ge 8\end{array} \right.\)