Chapter 3: Q3E (page 140)
Question:Suppose thatXandYhave a continuous joint distribution
for which the joint p.d.f. is defined as follows:
\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{3}}}{{\bf{2}}}{{\bf{y}}^{\bf{2}}}\;{\bf{for}}\;{\bf{0}} \le {\bf{x}} \le {\bf{2}}\;{\bf{and}}\;{\bf{0}} \le {\bf{y}} \le {\bf{1}}\\{\bf{0}}\;\,{\bf{otherwise}}\end{array} \right.\)
a. Determine the marginal p.d.f.’s ofXandY.
b. AreXandYindependent?
c. Are the event{X<1}and the event\(\left\{ {{\bf{Y}} \ge \frac{{\bf{1}}}{{\bf{2}}}} \right\}\)independent?
Short Answer
- The marginal p.d.f of X is \({f_X}\left( x \right) = \left\{ \begin{array}{l}\frac{1}{2}\;for\;0 \le x \le 2\\0\;othewise\end{array} \right.\)
The marginal p.d.f of Y is \({f_Y}\left( y \right) = \left\{ \begin{array} {l}3{y^2}\;for\;0 \le y \le 1\\0\;otherwise\end{array} \right.\)
- X and Y are independent.
c. The event {X<1} and the event \(\left\{ {Y \ge \frac{1}{2}} \right\}\) are independent