Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose thatnletters are placed at random innenvelopes, as in the matching problem of Sec. 1.10, and letqndenote the probability that no letter is placed in the correct envelope. Show that the probability that exactly one letter is placed in the correct envelope isqn−1.

Short Answer

Expert verified

Exactly one letter placed in the correct envelope is \({q_{n - 1}}\).

Step by step solution

01

Given information

Given that\(n\)letters are placed at random in\(n\)envelopes.

Also,\({q_n}\)denote the probability that no letter is placed in the correct envelope.

Also, let \({q_{n - 1}}\) denote the probability that exactly one letter is placed.

02

State the condition

Let \({A_i}\) be the event that the letter is placed in the correct envelope \(\left( {i = 1, \ldots ,n} \right)\). Then \({q_n}\)is given by \({q_n} = pr\left( {\bigcup\nolimits_{i = 1}^n {{A_i}} } \right)\) .

03

Compute the probability

Here we use this theorem to solve is

\(pr\left( {\bigcup\nolimits_{i = 1}^n {{A_i}} } \right) = \sum\limits_{i = 1}^n {pr\left( {{A_i}} \right) - \sum\limits_{i < j} {pr\left( {{A_i} \cap {A_j}} \right) + \sum\limits_{i < j < k} {pr\left( {{A_i} \cap {A_j} \cap {A_k}} \right) + \ldots + {{\left( { - 1} \right)}^{n + 1}}pr\left( {{A_1} \cap {A_2}, \ldots , \cap {A_n}} \right)} } } \)

Since the letters are placed in the envelopes correctly at random, the probability\(pr\left( {{A_i}} \right)\)that any particular letter will be placed in the correct envelope is\(\frac{1}{n}\).

Then exactly one letter is placed in the correct envelope of probability is given by

\(\begin{aligned}{c}\sum\limits_{i = 1}^n {pr\left( {{A_i}} \right) = {q_{n - 1}}} \\{\rm{ = n \times }}\frac{{\rm{1}}}{{\rm{n}}}\\{\rm{ = 1}}\end{aligned}\)

Hence proving that exactly one letter is placed in the correct envelope is \({q_{n - 1}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let X have the uniform distribution on the interval, and let prove that \({\bf{cX + d}}\) it has a uniform distribution on the interval \(\left[ {{\bf{ca + d,cb + d}}} \right]\)

Suppose that three random variables X1, X2, and X3 have a continuous joint distribution with the following joint p.d.f.:

\({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{c}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{ + 2}}{{\bf{x}}_{\bf{2}}}{\bf{ + 3}}{{\bf{x}}_{\bf{3}}}} \right)}&{{\bf{for0}} \le {{\bf{x}}_{\bf{i}}} \le {\bf{1}}\,\,\left( {{\bf{i = 1,2,3}}} \right)}\\{\bf{0}}&{{\bf{otherwise}}{\bf{.}}}\end{align}} \right.\)

Determine\(\left( {\bf{a}} \right)\)the value of the constant c;

\(\left( {\bf{b}} \right)\)the marginal joint p.d.f. of\({{\bf{X}}_{\bf{1}}}\)and\({{\bf{X}}_{\bf{3}}}\); and

\(\left( {\bf{c}} \right)\)\({\bf{Pr}}\left( {{{\bf{X}}_{\bf{3}}}{\bf{ < }}\frac{{\bf{1}}}{{\bf{2}}}\left| {{{\bf{X}}_{\bf{1}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{4}}}{\bf{,}}{{\bf{X}}_{\bf{2}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{4}}}} \right.} \right){\bf{.}}\)

In a large collection of coins, the probability X that a head will be obtained when a coin is tossed varies from one coin to another, and the distribution of X in the collection is specified by the following p.d.f.:

\({{\bf{f}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{6x}}\left( {{\bf{1 - x}}} \right)}&{{\bf{for}}\,{\bf{0 < x < 1}}}\\{\bf{0}}&{{\bf{otherwise}}}\end{align}} \right.\)

Suppose that a coin is selected at random from the collection and tossed once, and that a head is obtained. Determine the conditional p.d.f. of X for this coin.

Suppose that a person’s score X on a mathematics aptitude test is a number between 0 and 1, and that his score Y on a music aptitude test is also a number between 0 and 1. Suppose further that in the population of all college students in the United States, the scores X and Y are distributed according to the following joint pdf:

\(f\left( {x,y} \right)\left\{ \begin{aligned}\frac{2}{5}\left( {2x + 3y} \right)for0 \le x \le 1 and 0 \le y \le 1\\0 otherwise\end{aligned} \right.\)

a. What proportion of college students obtain a score greater than 0.8 on the mathematics test?

b. If a student’s score on the music test is 0.3, what is the probability that his score on the mathematics test will be greater than 0.8?

c. If a student’s score on the mathematics test is 0.3, what is the probability that his score on the music test will be greater than 0.8?

Question:Suppose that in a certain drug the concentration of aparticular chemical is a random variable with a continuousdistribution for which the p.d.f.gis as follows:

\({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{3}}}{{\bf{8}}}{{\bf{x}}^{\bf{2}}}\;{\bf{for}}\;{\bf{0}} \le {\bf{x}} \le {\bf{2}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

Suppose that the concentrationsXandYof the chemicalin two separate batches of the drug are independent randomvariables for each of which the p.d.f. isg. Determine

(a) the joint p.d.f.of X andY;

(b) Pr(X=Y);

(c) Pr(X >Y );

(d) Pr(X+Y≤1).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free