Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a random variableXhas a discrete distribution

with the following p.f.:

\(f\left( x \right) = \left\{ \begin{array}{l}cx\;\;for\;x = 1,...,5,\\0\;\;\;\;otherwise\end{array} \right.\)

Determine the value of the constantc.

Short Answer

Expert verified

The value of constant c is \(\frac{1}{{15}}\).

Step by step solution

01

Given information

The random variable X follows the discrete distribution.

The probability function is given as,

\(f\left( x \right) = \left\{ \begin{array}{l}cx;\;\;x = 1,...,5,\\0\;;\;\;\;{\rm{otherwise}}\end{array} \right.\)

02

Calculate the value for c

It is known that the sum of probabilities over the support of random variable is equal to 1.

From the provided probability function, the value for constant c is computed as,

\(\begin{aligned}{c}\sum\limits_i {f\left( x \right)} & = 1\\\sum\limits_{x = 1}^5 {cx}& = 1\\\left( {1c + 2c + 3c + 4c + 5c} \right)& = 1\\15c &= 1\\c& = \frac{1}{{15}}\end{aligned}\)

Therefore, the value of constant c is \(\frac{1}{{15}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Suppose thatXandYhave a discrete joint distributionfor which the joint p.f. is defined as follows:

\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{1}}}{{{\bf{30}}}}\left( {{\bf{x + y}}} \right)\;{\bf{for}}\;{\bf{x = 0,1,2}}\;{\bf{and}}\;{\bf{y = 0,1,2,3}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

a. Determine the marginal p.f.’s ofXandY.

b. AreXandYindependent?

Suppose that a fair coin is tossed 10 times independently.

Determine the p.f. of the number of heads that will be obtained.

Suppose that a box contains a large number of tacks and that the probability X that a particular tack will land with its point up when it is tossed varies from tack to tack in accordance with the following p.d.f.:

\(f\left( x \right) = \left\{ \begin{array}{l}2\left( {1 - x} \right)\;\;\;\;\;for\;0 < x < 1\\0\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

Suppose that a tack is selected at random from the box and that this tack is then tossed three times independently. Determine the probability that the tack will land with its point up on all three tosses.

Question:Suppose that two persons make an appointment to meet between 5 p.m. and 6 p.m. at a certain location, and they agree that neither person will wait more than 10 minutes for the other person. If they arrive independently at random times between 5 p.m. and 6 p.m. what is the probability that they willmeet?

In a large collection of coins, the probability X that a head will be obtained when a coin is tossed varies from one coin to another, and the distribution of X in the collection is specified by the following p.d.f.:

\({{\bf{f}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{6x}}\left( {{\bf{1 - x}}} \right)}&{{\bf{for}}\,{\bf{0 < x < 1}}}\\{\bf{0}}&{{\bf{otherwise}}}\end{align}} \right.\)

Suppose that a coin is selected at random from the collection and tossed once, and that a head is obtained. Determine the conditional p.d.f. of X for this coin.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free