The pdf of a uniform distribution is obtained by using the formula: \(\frac{1}{{b - a}};a \le x \le b\).
Here, \(a = 0,b = 1\).
Therefore, the PDF \({X_i} \sim U[0,1],\;i = 1,2\) is expressed as,
\({f_{{x_i}}} = \left\{ \begin{array}{l}\frac{1}{{1 - 0}} = 1\;\;\;\;\;\;\;\;\;\;0 \le {x_i} \le 1\\0;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)
Since both the random variables are independent, the joint density function of both the random variable is :
\(\begin{aligned}{f_{{x_1}}}_{{x_2}}\left( {{x_1},{x_2}} \right) &= {f_{{x_1}}}\left( {{x_1}} \right) \cdot {f_{{x_2}}}\left( {{x_2}} \right)\\ &= 1 \cdot 1\\ &= 1,\;0 \le {x_1} \le 1,\;0 \le {x_2} \le 1\end{aligned}\)