Chapter 3: Q23SE (page 93)
Suppose that\({X_1}....{X_n}\)are i.i.d. random variables, each having the following c.d.f.:\(F\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x \le 0\\1 - {e^{ - x}}\,\,\,for\,x > 0\end{array} \right.\)
Let\({Y_1} = min\left\{ {{X_1},{X_2}..{X_n}} \right\}\)and\({Y_n} = max\left\{ {{X_{1,}}{X_2}..{X_n}} \right\}\)Determine the conditional p.d.f. of\({Y_1}\)given that\({Y_n} = {y_n}\)
Short Answer
Conditional pdf of\({Y_1}\)given that\({Y_n} = {y_n}\)is
\(h\left( {{y_1}|{y_n}} \right) = \frac{{\left( {n - 1} \right)\left( {\exp \left( { - {y_1}} \right) - \exp {{\left( { - {y_n}} \right)}^{n - 2}}\exp \left( { - {y_1}} \right)} \right)}}{{{{\left( {1 - \exp \left( { - {y_n}} \right)} \right)}^{n - 1}}}}\) for \(0 < {y_1} < {y_n}\)