Chapter 3: Q22SE (page 93)
Suppose that the random variables X and Y have the following joint p.d.f.:
\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ {\begin{aligned}{{}{}}{{\bf{8xy}}}&{{\bf{for}}\,{\bf{0}} \le {\bf{x}} \le {\bf{y}} \le {\bf{1,}}}\\{\bf{0}}&{{\bf{otherwise}}{\bf{.}}}\end{aligned}} \right.\)
Also, let\({\bf{U = }}{\raise0.7ex\hbox{\({\bf{X}}\)} \!\mathord{\left/{\vphantom {{\bf{X}} {\bf{Y}}}}\right.}\!\lower0.7ex\hbox{\({\bf{Y}}\)}}\)and\({\bf{V = Y}}\).
a. Determine the joint p.d.f. of U and V .
b. Are X and Y independent?
c. Are U and V independent?
Short Answer
a. The joint p.d.f. of U and V is,
\(f\left( {u,v} \right) = \left\{ {\begin{aligned}{{}{}}{8u{v^3}}&{for\,0 \le u \le 1,\,\,0 \le v \le 1,}\\0&{otherwise,}\end{aligned}} \right.\)
b. X and Y are not independent.
c. U and V are independent.