Chapter 3: Q21SE (page 93)
Suppose that X and Y are i.i.d. random variables, and that each has the following p.d.f.:
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}\left\{ {\begin{aligned}{{}{}}{{{\bf{e}}^{{\bf{ - x}}}}}&{{\bf{for}}\,{\bf{x > 0,}}}\\{\bf{0}}&{{\bf{otherwise}}{\bf{.}}}\end{aligned}} \right.\)
Also, let\({\bf{U = }}{\raise0.7ex\hbox{\({\bf{X}}\)}\!\mathord{\left/{\vphantom {{\bf{X}} {\left( {{\bf{X + Y}}} \right)}}}\right.}\!\lower0.7ex\hbox{\({\left( {{\bf{X + Y}}} \right)}\)}}\)and\({\bf{V = X + Y}}\).
a. Determine the joint p.d.f. of U and V .
b. Are U and V independent?
Short Answer
a.The joint p.d.f. of U and V is,
\(f\left( {u,v} \right) = \left\{ {\begin{aligned}{{}{}}{v{e^{ - v}}}&{for\,0 < u < 1,v > 0}\\0&{otherwise.}\end{aligned}} \right.\)
b. Yes, U and V are independent.