Chapter 3: Q20E (page 202)
The unique stationary distribution in Exercise 9 is \({\bf{v = }}\left( {{\bf{0,1,0,0}}} \right)\). This is an instance of the following general result: Suppose that a Markov chain has exactly one absorbing state. Suppose further that, for each non-absorbing state \({\bf{k}}\), there is \({\bf{n}}\) such that the probability is positive of moving from state \({\bf{k}}\) to the absorbing state in \({\bf{n}}\) steps. Then the unique stationary distribution has probability 1 in the absorbing state. Prove this result.
Short Answer
Proved.