Chapter 3: Q1E (page 140)
Question:Suppose thatXandYhave a continuous joint distribution for which the joint p.d.f. is
\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}\left\{ \begin{array}{l}{\bf{k}}\;{\bf{for}}\;{\bf{a}} \le {\bf{x}} \le {\bf{b}}\;{\bf{and}}\;{\bf{c}} \le {\bf{y}} \le {\bf{d}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)
wherea <b,c < d, andk >0.
Find the marginal distributions ofXandY.
Short Answer
The marginal distribution of X is\(f\left( x \right) = \frac{1}{{\left( {b - a} \right)}};\;a \le x \le b\).
The marginal distribution of Y is \(f\left( y \right) = \frac{1}{{\left( {d - c} \right)}};\;c \le x \le d\)