Chapter 3: Q1E (page 200)
Consider the Markov chain in Example 3.10.2 with initial
probability vector \(v = \left( {\frac{1}{2},\frac{1}{2}} \right)\) Where \(p = \left[ {\begin{array}{*{20}{c}}{\frac{1}{3}}&{\frac{2}{3}}\\{\frac{1}{3}}&{\frac{1}{3}}\end{array}} \right]\)
a.Find the probability vector specifying the probabilities
of the states at timen=2.
b.Find the two-step transition matrix
Short Answer
- The probabilities of the states at a time\(n = 2\)is
\(\left[ {\begin{array}{{}{}}{\frac{1}{6}}&{\frac{4}{9}}\\{\frac{1}{9}}&{\frac{1}{6}}\end{array}} \right]\)
- The two-step transition probability matrix is
\(\left[ {\begin{array}{{}{}}{\frac{1}{3}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{1}{3}}\end{array}} \right]\)