Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Return to Example 3.10.13. Prove that the stationary distributions described there are the only stationary distributions for that Markov chain.

Short Answer

Expert verified

Proved

Step by step solution

01

Given information

Referring to example 3.10.13, stationary distributions for the plant breeding experiment.

02

Stationary distributions describe there are the only stationary distributions for that Markov chain

In the 2-step transition matrix, it is possible to get from every non-absorbing state into each of the absorbing states in two steps.

So, no matter what non-absorbing state it starts in, the probability is one that it will eventually end up in one absorbing state.

Hence, no distribution with a positive probability on any non-absorbing state can be a stationary distribution.

Hence, proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a large collection of coins, the probability X that a head will be obtained when a coin is tossed varies from one coin to another, and the distribution of X in the collection is specified by the following p.d.f.:

\({{\bf{f}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{6x}}\left( {{\bf{1 - x}}} \right)}&{{\bf{for}}\,{\bf{0 < x < 1}}}\\{\bf{0}}&{{\bf{otherwise}}}\end{align}} \right.\)

Suppose that a coin is selected at random from the collection and tossed once, and that a head is obtained. Determine the conditional p.d.f. of X for this coin.

Suppose that three boys A, B, and C are throwing a ball from one to another. Whenever A has the ball, he throws it to B with a probability of 0.2 and to C with a probability of 0.8. Whenever B has the ball, he throws it to A with a probability of 0.6 and to C with a probability of 0.4. Whenever C has the ball, he is equally likely to throw it to either A or B.

a. Consider this process to be a Markov chain and construct the transition matrix.

b. If each of the three boys is equally likely to have the ball at a certain time n, which boy is most likely to have the ball at time\(n + 2\).

Let Xbe a random variable with the p.d.f. specified in Example 3.2.6. Compute Pr(Xโ‰ค8/27).

Suppose that the p.d.f. of a random variable X is as

follows:\(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{2}x\,\,\,\,\,\,\,\,for\,0 < x < 2\\0\,\,\,\,\,\,\,\,\,\,\,\,otherwise\end{array} \right.\)

Also, suppose that \(Y = X\left( {2 - X} \right)\) Determine the cdf and the pdf of Y .

Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\) form a random sample of sizen from the uniform distribution on the interval [0, 1] andthat \({{\bf{Y}}_{\bf{n}}}{\bf{ = max}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}} \right)\). Find the smallest value of \({\bf{n}}\)such that\({\bf{Pr}}\left( {{{\bf{Y}}_{\bf{n}}} \ge {\bf{0}}{\bf{.99}}} \right) \ge {\bf{0}}{\bf{.95}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free