Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the quantile function for the distribution in Example 3.3.1.

Short Answer

Expert verified

Step by step solution

01

Given information 

02

Calculating the quantile function of the given distribution 

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two students,AandB,are both registered for a certain course. Assume that studentAattends class 80 percent of the time, studentBattends class 60 percent of the time, and the absences of the two students are independent. Consider the conditions of Exercise 7 of Sec. 2.2 again. If exactly one of the two students,AandB,is in class on a given day, what is the probability that it isA?

Question:Suppose that in a certain drug the concentration of aparticular chemical is a random variable with a continuousdistribution for which the p.d.f.gis as follows:

\({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}\left\{ \begin{array}{l}\frac{{\bf{3}}}{{\bf{8}}}{{\bf{x}}^{\bf{2}}}\;{\bf{for}}\;{\bf{0}} \le {\bf{x}} \le {\bf{2}}\\{\bf{0}}\;{\bf{otherwise}}\end{array} \right.\)

Suppose that the concentrationsXandYof the chemicalin two separate batches of the drug are independent randomvariables for each of which the p.d.f. isg. Determine

(a) the joint p.d.f.of X andY;

(b) Pr(X=Y);

(c) Pr(X >Y );

(d) Pr(X+Yโ‰ค1).

Suppose that three random variables X1, X2, and X3 have a continuous joint distribution with the following joint p.d.f.:

\({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}} \right){\bf{ = }}\left\{ {\begin{align}{}{{\bf{c}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{ + 2}}{{\bf{x}}_{\bf{2}}}{\bf{ + 3}}{{\bf{x}}_{\bf{3}}}} \right)}&{{\bf{for0}} \le {{\bf{x}}_{\bf{i}}} \le {\bf{1}}\,\,\left( {{\bf{i = 1,2,3}}} \right)}\\{\bf{0}}&{{\bf{otherwise}}{\bf{.}}}\end{align}} \right.\)

Determine\(\left( {\bf{a}} \right)\)the value of the constant c;

\(\left( {\bf{b}} \right)\)the marginal joint p.d.f. of\({{\bf{X}}_{\bf{1}}}\)and\({{\bf{X}}_{\bf{3}}}\); and

\(\left( {\bf{c}} \right)\)\({\bf{Pr}}\left( {{{\bf{X}}_{\bf{3}}}{\bf{ < }}\frac{{\bf{1}}}{{\bf{2}}}\left| {{{\bf{X}}_{\bf{1}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{4}}}{\bf{,}}{{\bf{X}}_{\bf{2}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{4}}}} \right.} \right){\bf{.}}\)

In Example 3.8.4, the p.d.f. of \({\bf{Y = }}{{\bf{X}}^{\bf{2}}}\) is much larger for values of y near 0 than for values of y near 1 despite the fact that the p.d.f. of X is flat. Give an intuitive reason why this occurs in this example.

Suppose that\({X_1}....{X_n}\)are i.i.d. random variables, each having the following c.d.f.:\(F\left( x \right) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x \le 0\\1 - {e^{ - x}}\,\,\,for\,x > 0\end{array} \right.\)

Let\({Y_1} = min\left\{ {{X_1},{X_2}..{X_n}} \right\}\)and\({Y_n} = max\left\{ {{X_{1,}}{X_2}..{X_n}} \right\}\)Determine the conditional p.d.f. of\({Y_1}\)given that\({Y_n} = {y_n}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free