Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X1…,Xn be independent random variables, and let W be a random variable such that \({\rm P}\left( {w = c} \right) = 1\) for some constant c. Prove that \({x_1},....,{x_n}\)they are conditionally independent given W = c.

Short Answer

Expert verified

\({x_1}....{x_n}\)are conditionally independent given W=c

Step by step solution

01

Random variable      

A random variable is a statistic with an unspecified amount or a function that gives numbers to each of the results of a research.

02

Compute the probability

n random variables\({x_{1,}}{x_{2,....}}{x_n}\)are called independent if every random variable belongs to the set of real number.

Therefore, we can write:

\({\rm P}\left( {{x_1} \in {A_1}} \right){\rm P}\left( {{x_2} \in {A_2}} \right)....{\rm P}\left( {{x_n} \in {A_n}} \right)\)

Let w be a random variable for some constant c such that\({\rm P}\left( {w = c} \right) = 1\)

Therefore, from the definition of independent random variables, we can say that given w=c \({x_1}....{x_n}\)are conditionally independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There are two boxes A and B, each containing red and green balls. Suppose that box A contains one red ball and two green balls and box B contains eight red balls and two green balls. Consider the following process: One ball is selected at random from box A, and one ball is selected at random from box B. The ball selected from box A is then placed in box B and the ball selected from box B is placed in box A. These operations are then repeated indefinitely. Show that the numbers of red balls in box A form a Markov chain with stationary transition probabilities, and construct the transition matrix of the Markov chain.

Let Xbe a random variable with the p.d.f. specified in Example 3.2.6. Compute Pr(X≤8/27).

Question:Suppose that the joint p.d.f. ofXandYis as follows:

\(f\left( {x,y} \right) = \left\{ \begin{array}{l}2x{e^{ - y}}\;for\;0 \le x \le 1\;and\;0 < y < \infty \\0\;otherwise\end{array} \right.\)

AreXandYindependent?

Suppose that an electronic system comprises four components, and let\({X_j}\)denote the time until component j fails to operate (j = 1, 2, 3, 4). Suppose that\({X_1},{X_2},{X_3}\)and\({X_4}\)are i.i.d. random variables, each of which has a continuous distribution with c.d.f.\(F\left( x \right)\)Suppose that the system will operate as long as both component 1 and at least one of the other three components operate. Determine the c.d.f. of the time until the system fails to operate.

In Example 3.8.4, the p.d.f. of \({\bf{Y = }}{{\bf{X}}^{\bf{2}}}\) is much larger for values of y near 0 than for values of y near 1 despite the fact that the p.d.f. of X is flat. Give an intuitive reason why this occurs in this example.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free