Chapter 3: Q14E (page 187)
Suppose that \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{n}}}\)form a random sample of nobservations from the uniform distribution on the interval(0, 1), and let Y denote the second largest of the observations.Determine the p.d.f. of Y.Hint: First, determine thec.d.f. G of Y by noting that
\(\begin{aligned}G\left( y \right) &= \Pr \left( {Y \le y} \right)\\ &= \Pr \left( {At\,\,least\,\,n - 1\,\,observations\,\, \le \,\,y} \right)\end{aligned}\)
Short Answer
\(g\left( y \right) = \left\{ \begin{array}{l}n{x^{n - 2}}\left( {1 - x} \right),0 < y < 1\\0,\,otherwise\end{array} \right.\)