Chapter 3: Q12E (page 93)
Question:Prove Theorem 3.5.6.
Let X and Y have a continuous joint distribution. Suppose that
\(\;\left\{ {\left( {x,y} \right):f\left( {x,y} \right) > 0} \right\}\)is a rectangular region R (possibly unbounded) with sides (if any) parallel to the coordinate axes. Then X and Y are independent if and only if Eq. (3.5.7) holds for all\(\left( {x,y} \right) \in R\)
Short Answer
\(f\left( {x,y} \right) = {h_1}\left( x \right){h_2}\left( y \right)\)for all \(\left( {x,y} \right) \in R\)