Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let W denote the range of a random sample of nobservations from the uniform distribution on the interval[0, 1]. Determine the value of

\({\bf{Pr}}\left( {{\bf{W > 0}}{\bf{.9}}} \right)\).

Short Answer

Expert verified

\[1 - \left( {{{0.9}^{n - 1}}n - {{0.9}^n}n + {{0.9}^n}} \right)\]

Step by step solution

01

Given information

The random variable X follows uniform distribution on the interval [0,1], i.e.,\(X \sim U\left[ {0,1} \right]\)Here \({X_1} \ldots {X_n}\)is a random sample from a uniform distribution \(U\left( {0,1} \right)\).

\(\begin{aligned}{Y_1} &= \min \left\{ {{X_1} \ldots {X_n}} \right\}\\{Y_n} &= \max \left\{ {{X_1} \ldots {X_n}} \right\}\end{aligned}\)

02

Obtain the PDF and CDF of X

The pdf of a uniform distribution is obtained by using the formula: \(\frac{1}{{b - a}};a \le x \le b\)

Here, \(a = 0,b = 1\)

\({f_x} = \frac{1}{{1 - 0}};0 \le x \le 1\)

\(\begin{aligned}{f_x} &= 1,0 \le x \le 1\\ &= 0,o.w.\end{aligned}\)

The CDF of a uniform distribution is obtained by using the formula:

\(\begin{aligned}{F_X}\left( x \right) &= P\left( {X \le x} \right)\\ &= \frac{{x - a}}{{b - a}}\\ &= \frac{{x - 0}}{{1 - 0}}\\ &= x\,{\rm{for}}\,\,0 < x < 1\end{aligned}\)

03

Obtain the joint p.d.f of a random variable

The joint distribution of \({Y_1},{Y_n}\)is,

\(\begin{aligned}G\left( {{y_1},{y_n}} \right) &= \Pr \left( {{Y_1} \le {y_1}\,and\,{Y_n} \le {y_n}} \right)\\ &= \Pr \left( {{Y_n} \le {y_n}} \right) - \Pr \left( {\,{Y_n} \le {y_n}\,and\,{Y_1} > {y_1}} \right)\\ &= \Pr \left( {{Y_n} \le {y_n}} \right) - \Pr \left( {{y_1} < {X_1} \le {y_n},{y_1} < {X_2} \le {y_n}, \ldots ,{y_1} < {X_n} \le {y_n}} \right)\\ &= {G_n}\left( {{y_n}} \right) - \prod\limits_{i = 1}^n {\Pr \left( {{y_1} < {X_i} \le {y_n}} \right)} \\ &= {\left( {F\left( {{y_n}} \right)} \right)^n} - {\left( {F\left( {{y_n}} \right) - F\left( {{y_1}} \right)} \right)^n}\end{aligned}\)

The bivariate joint p.d.f is found by differentiating the joint CDF

\(\begin{aligned}g\left( {{y_1},{y_n}} \right) &= \frac{{{\partial ^2}G\left( {{y_1},{y_n}} \right)}}{{\partial {y_1}\partial {y_n}}}, - \infty < {y_1} < {y_n} < \infty \\ &= n\left( {n - 1} \right){\left( {F\left( {{y_n}} \right) - F\left( {{y_1}} \right)} \right)^{n - 2}}f\left( {{y_1}} \right)f\left( {{y_n}} \right)\\ &= \left\{ \begin{aligned}n\left( {n - 1} \right){\left( {\left( {{y_n}} \right) - \left( {{y_1}} \right)} \right)^{n - 2}},0 < {y_1} < {y_n} < 1\\0,\,otherwise\end{aligned} \right.\end{aligned}\)

04

Obtain the Distribution of the Range

The random variable \(W = {Y_n} - {Y_1}\) is called the range of the sample.

Let \(Z = {Y_n} - W\)

\(\begin{aligned}h\left( w \right) &= \int\limits_0^{1 - w} {n\left( {n - 1} \right)} {w^{n - 2}}dz\\ &= \left\{ \begin{aligned}n\left( {n - 1} \right){w^{n - 2}}\left( {1 - w} \right),0 < w < 1\\0,\,otherwise\end{aligned} \right.\end{aligned}\)

05

Calculate the required probability

\(\begin{aligned}\Pr \left( {W > 0.9} \right) &= \int\limits_{0.9}^1 {n\left( {n - 1} \right){w^{n - 2}}\left( {1 - w} \right)} dw\\ &= n\left( {n - 1} \right)\int\limits_{0.9}^1 {\left( {{w^{n - 2}} \times {w^{n - 1}}} \right)} dw\\ &= \left( {n{w^{n - 1}} \times \left( {n - 1} \right){w^n}} \right)_{0.9}^1\\ &= 1 - \left( {{{0.9}^{n - 1}}n - {{0.9}^n}n + {{0.9}^n}} \right)\end{aligned}\)

Therefore, the answer is\({\bf{1 - }}\left( {{\bf{0}}{\bf{.}}{{\bf{9}}^{{\bf{n - 1}}}}{\bf{n - 0}}{\bf{.}}{{\bf{9}}^{\bf{n}}}{\bf{n + 0}}{\bf{.}}{{\bf{9}}^{\bf{n}}}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free