The joint distribution of \({Y_1},{Y_n}\)is,
\(\begin{aligned}G\left( {{y_1},{y_n}} \right) &= \Pr \left( {{Y_1} \le {y_1}\,and\,{Y_n} \le {y_n}} \right)\\ &= \Pr \left( {{Y_n} \le {y_n}} \right) - \Pr \left( {\,{Y_n} \le {y_n}\,and\,{Y_1} > {y_1}} \right)\\ &= \Pr \left( {{Y_n} \le {y_n}} \right) - \Pr \left( {{y_1} < {X_1} \le {y_n},{y_1} < {X_2} \le {y_n}, \ldots ,{y_1} < {X_n} \le {y_n}} \right)\\ &= {G_n}\left( {{y_n}} \right) - \prod\limits_{i = 1}^n {\Pr \left( {{y_1} < {X_i} \le {y_n}} \right)} \\ &= {\left( {F\left( {{y_n}} \right)} \right)^n} - {\left( {F\left( {{y_n}} \right) - F\left( {{y_1}} \right)} \right)^n}\end{aligned}\)
The bivariate joint p.d.f is found by differentiating the joint CDF
\(\begin{aligned}g\left( {{y_1},{y_n}} \right) &= \frac{{{\partial ^2}G\left( {{y_1},{y_n}} \right)}}{{\partial {y_1}\partial {y_n}}}, - \infty < {y_1} < {y_n} < \infty \\ &= n\left( {n - 1} \right){\left( {F\left( {{y_n}} \right) - F\left( {{y_1}} \right)} \right)^{n - 2}}f\left( {{y_1}} \right)f\left( {{y_n}} \right)\\ &= \left\{ \begin{aligned}n\left( {n - 1} \right){\left( {\left( {{y_n}} \right) - \left( {{y_1}} \right)} \right)^{n - 2}},0 < {y_1} < {y_n} < 1\\0,\,otherwise\end{aligned} \right.\end{aligned}\)