Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the conditions of Exercise 9, determine the value of \({\bf{Pr}}\left( {{{\bf{Y}}_{\bf{1}}} \le {\bf{0}}{\bf{.1}}\;{\bf{and}}\;{\bf{Y}}_{\bf{n}}^{} \ge {\bf{0}}{\bf{.8}}} \right)\).

Short Answer

Expert verified

\[{0.9^n} + {0.8^n} - {0.7^n}\]

Step by step solution

01

Given information

Here,\({X_1} \ldots {X_n}\)is a random sample from uniform distribution\(U\left( {0,1} \right)\).

\(\begin{aligned}{Y_1} &= \min \left\{ {{X_1} \ldots {X_n}} \right\}\\{Y_n} &= \max \left\{ {{X_1} \ldots {X_n}} \right\}\end{aligned}\)

02

Obtain the PDF and CDF of X

The pdf of a uniform distribution is obtained by using the formula: \(\frac{1}{{b - a}};a \le x \le b\).

Here, \(a = 0,b = 1\).

Therefore, the PDF of X is expressed as,

\({f_x} = \left\{ \begin{array}{l}\frac{1}{{1 - 0}} = 1\;\;\;\;\;\;\;\;\;\;0 \le x \le 1\\0;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;otherwise\end{array} \right.\)

The CDF of a uniform distribution is obtained by using the formula:

\(\begin{aligned}{F_X}\left( x \right) &= P\left( {X \le x} \right)\\ &= \frac{{x - a}}{{b - a}}\\ &= \frac{{x - 0}}{{1 - 0}}\\ &= x\end{aligned}\)

03

Defining the probability

We have to find,

\(\begin{aligned}\Pr \left( {{Y_1} \le 0.1\;and\;Y_n^{} \ge 0.8} \right) &= P\left( {{Y_1} \ge 0.1} \right) - P\left( {{Y_1} < 0.1,{Y_n} \le 0.8} \right)\\ &= P\left( {{X_1} \ge 0.1, \ldots ,{X_n} \ge 0.1} \right) - {0.8^n} + {0.7^n}\\ &= {\left[ {P\left( {{X_1} > 0.1} \right)} \right]^n} - {0.8^n} + {0.7^n}\\ &= {\left[ {1 - F\left( {0.1} \right)} \right]^n} - {0.8^n} + {0.7^n}\\ &= {\left( {1 - 0.1} \right)^n} - {0.8^n} + {0.7^n}\\ &= {0.9^n} - {0.8^n} + {0.7^n}\end{aligned}\)

Hence, the answer is \({0.9^n} - {0.8^n} - {0.7^n}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There are two boxes A and B, each containing red and green balls. Suppose that box A contains one red ball and two green balls and box B contains eight red balls and two green balls. Consider the following process: One ball is selected at random from box A, and one ball is selected at random from box B. The ball selected from box A is then placed in box B and the ball selected from box B is placed in box A. These operations are then repeated indefinitely. Show that the numbers of red balls in box A form a Markov chain with stationary transition probabilities, and construct the transition matrix of the Markov chain.

Question:Suppose that the joint p.d.f. of X and Y is as follows:

\(f\left( {x,y} \right) = \left\{ \begin{array}{l}24xy for x \ge 0,y \ge 0, and x + y \le 1,\\0 otherwise\end{array} \right.\).

Are X and Y independent?

Suppose that an electronic system comprises four components, and let\({X_j}\)denote the time until component j fails to operate (j = 1, 2, 3, 4). Suppose that\({X_1},{X_2},{X_3}\)and\({X_4}\)are i.i.d. random variables, each of which has a continuous distribution with c.d.f.\(F\left( x \right)\)Suppose that the system will operate as long as both component 1 and at least one of the other three components operate. Determine the c.d.f. of the time until the system fails to operate.

The definition of the conditional p.d.f. of X given\({\bf{Y = y}}\)is arbitrary if\({{\bf{f}}_{\bf{2}}}\left( {\bf{y}} \right){\bf{ = 0}}\). The reason that this causes no serious problem is that it is highly unlikely that we will observe Y close to a value\({{\bf{y}}_{\bf{0}}}\)such that\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{0}}}} \right){\bf{ = 0}}\). To be more precise, let\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{0}}}} \right){\bf{ = 0}}\), and let\({{\bf{A}}_{\bf{0}}}{\bf{ = }}\left( {{{\bf{y}}_{\bf{0}}}{\bf{ - }} \in {\bf{,}}{{\bf{y}}_{\bf{0}}}{\bf{ + }} \in } \right)\). Also, let\({{\bf{y}}_{\bf{1}}}\)be such that\({{\bf{f}}_{\bf{2}}}\left( {{{\bf{y}}_{\bf{1}}}} \right){\bf{ > 0}}\), and let\({{\bf{A}}_{\bf{1}}}{\bf{ = }}\left( {{{\bf{y}}_{\bf{1}}}{\bf{ - }} \in {\bf{,}}{{\bf{y}}_{\bf{1}}}{\bf{ + }} \in } \right)\). Assume that\({{\bf{f}}_{\bf{2}}}\)is continuous at both\({{\bf{y}}_{\bf{0}}}\)and\({{\bf{y}}_{\bf{1}}}\).

Show that

\(\mathop {{\bf{lim}}}\limits_{ \in \to {\bf{0}}} \,\frac{{{\bf{Pr}}\left( {{\bf{Y}} \in {{\bf{A}}_{\bf{0}}}} \right)}}{{{\bf{Pr}}\left( {{\bf{Y}} \in {{\bf{A}}_{\bf{1}}}} \right)}}{\bf{ = 0}}{\bf{.}}\)

That is, the probability that Y is close to\({{\bf{y}}_{\bf{0}}}\)is much smaller than the probability that Y is close to\({{\bf{y}}_{\bf{1}}}\).

Let W denote the range of a random sample of nobservations from the uniform distribution on the interval[0, 1]. Determine the value of

\({\bf{Pr}}\left( {{\bf{W > 0}}{\bf{.9}}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free