For \({x_1}, \ldots ,{x_n}\) the pdf is given by
\(f\left( {{x_1}, \ldots ,{x_n}} \right) = \frac{k}{{{{\left( {b - a} \right)}^n}}}\) where the range is \(a \le {x_1}, \ldots ,{x_n} \le b\) and \(k\) is any constant .
We know that sum of all pdf is\(1\). So here we first calculate the constant value is
\(\begin{align}\int_{ - \infty }^\infty {f\left( {{x_1}, \ldots ,{x_n}} \right) = 1} \\\int_a^b {\frac{k}{{{{\left( {b - a} \right)}^n}}}dx = 1} \\k \times \frac{{\left( {b - a} \right)}}{{{{\left( {b - a} \right)}^n}}} &= 1\\k &= {\left( {b - a} \right)^{n - 1}}\end{align}\)
Then find the probability at least\(k\)is
\(\begin{align}p\left( {x \ge k} \right) &= p\left( {x \ge {{\left( {b - a} \right)}^{n - 1}}} \right)\\ &= p\left( {x = {{\left( {b - a} \right)}^n}} \right) + p\left( {x = \frac{1}{{\left( {b - a} \right)}}} \right)\\ &= \int_a^b {{{\left( {b - a} \right)}^{n - 1}}dx + \int_a^b {dx} } \\ &= \frac{2}{{\left( {b - a} \right)}}\end{align}\)
Hence the value is \(\frac{2}{{\left( {b - a} \right)}}\) .