Chapter 3: Q 12E (page 152)
Let Y be the rate (calls per hour) at which calls arrive at a switchboard. Let X be the number of calls during a two-hour period. Suppose that the marginal p.d.f. of Y is
\({{\bf{f}}_{\bf{2}}}\left( {\bf{y}} \right){\bf{ = }}\left\{ {\begin{align}{}{{{\bf{e}}^{{\bf{ - y}}}}}&{{\bf{if}}\,{\bf{y > 0,}}}\\{\bf{0}}&{{\bf{otherwise,}}}\end{align}} \right.\)
And that the conditional p.d.f. of X given\({\bf{Y = y}}\)is
\({{\bf{g}}_{\bf{1}}}\left( {{\bf{x}}\left| {\bf{y}} \right.} \right){\bf{ = }}\left\{ {\begin{align}{}{\frac{{{{\left( {{\bf{2y}}} \right)}^{\bf{x}}}}}{{{\bf{x!}}}}{{\bf{e}}^{{\bf{ - 2y}}}}}&{{\bf{if}}\,{\bf{x = 0,1,}}...{\bf{,}}}\\{\bf{0}}&{{\bf{otherwise}}{\bf{.}}}\end{align}} \right.\)
- Find the marginal p.d.f. of X. (You may use the formula\(\int_{\bf{0}}^\infty {{{\bf{y}}^{\bf{k}}}{{\bf{e}}^{{\bf{ - y}}}}{\bf{dy = k!}}} {\bf{.}}\))
- Find the conditional p.d.f.\({{\bf{g}}_{\bf{2}}}\left( {{\bf{y}}\left| {\bf{0}} \right.} \right)\)of Y given\({\bf{X = 0}}\).
- Find the conditional p.d.f.\({{\bf{g}}_{\bf{2}}}\left( {{\bf{y}}\left| 1 \right.} \right)\)of Y given\({\bf{X = 1}}\).
- For what values of y is\({{\bf{g}}_{\bf{2}}}\left( {{\bf{y}}\left| {\bf{1}} \right.} \right){\bf{ > }}{{\bf{g}}_{\bf{2}}}\left( {{\bf{y}}\left| {\bf{0}} \right.} \right)\)? Does this agree with the intuition that the more calls you see, the higher you should think the rate is?
Short Answer
- The marginal p.d.f. of X is, \(\frac{1}{3}{\left( {\frac{2}{3}} \right)^x}\)
- The conditional p.d.f. of \({g_2}\left( {y\left| 0 \right.} \right)\) is, \({g_2}\left( {y\left| 0 \right.} \right) = \left\{ {\begin{align}{}{3{e^{ - 3y}}}&{if\,y > 0}\\0&{otherwise}\end{align}} \right.\)
- The conditional p.d.f. of \({g_2}\left( {y\left| 1 \right.} \right)\) is, \({g_2}\left( {y\left| x \right.} \right) = \)\(\left\{ {\begin{align}{}{\frac{{\frac{{{{\left( {2y} \right)}^x}}}{{x!}}{e^{ - 3y}}}}{{\frac{1}{2}{{\left( {\frac{2}{3}} \right)}^x}}}}&{if\,y > 0,\,x = 0,1,...}\\0&{otherwise}\end{align}} \right.\)
- \({g_2}\left( {y\left| 1 \right.} \right) > {g_2}\left( {y\left| 0 \right.} \right)\) for \(y > \frac{1}{3}\)