Chapter 11: Q11.9-13SE (page 784)
In a two-way layout with \(K\) observations in each cell (\(K \ge 2\)), construct a test of the null hypothesis that all the main effects for factor \(A\) and factor\(B\), and also all the interactions, are 0.
Short Answer
Reject \({H_0}\) if \(U_ * ^2 = \frac{{IJ(K - 1)\left( {S_A^2 + S_B^2 + {S_{{\rm{Int\;}}}}} \right)}}{{(IJ - 1)S_{{\rm{R{\o}id\;}}}^2}} \ge F_{IJ - 1,IJ(K - 1)}^{ - 1}\left( {1 - {\alpha _0}} \right)\)