Chapter 11: Q11.9-12SE (page 784)
In a two-way layout with one observation in each cell, construct a test of the null hypothesis that all the effects of both factor \(A\) and factor \(B\) are\({\bf{0}}\).
Short Answer
Reject \({H_0}\)if\(U_{A + B}^2 = \frac{{(I - 1)(J - 1)\left( {S_A^2 + S_B^2} \right)}}{{(I + J - 2)S_{{\rm{Resid }}}^2}} \ge F_{I + J - 2,(I - 1)(J - 1)}^{ - 1}\left( {1 - {\alpha _0}} \right)\).