\(X\)and \(Y\) are \(n - \)dimensional random vectors and are independent.
Let,
\(\begin{array}{*{20}{c}}{X = \left[ {\begin{array}{*{20}{c}}{{X_1}}\\ \cdots \\{{X_n}}\end{array}} \right]}\\{Y = \left[ {\begin{array}{*{20}{c}}{{Y_1}}\\ \cdots \\{{Y_n}}\end{array}} \right]}\end{array}\)
For random variables we know that \(Cov(X + Y) = Cov(X) + Cov(Y)\).
\(\begin{array}{*{20}{c}}{{\mathop{\rm cov}} \left( {{X_i},{Y_j}} \right) = 0}\\{{\mathop{\rm cov}} \left( {{Y_i},{X_j}} \right) = 0}\end{array}\)
So,
\(\begin{array}{c}{\mathop{\rm cov}} \left( {{X_i} + {Y_i},{X_j} + {Y_j}} \right) = {\mathop{\rm cov}} \left( {{X_i},{X_j}} \right) + {\mathop{\rm cov}} \left( {{X_i},{Y_j}} \right) + {\mathop{\rm cov}} \left( {{Y_i},{X_j}} \right) + {\mathop{\rm cov}} \left( {{Y_i},{Y_j}} \right)\\ = {\mathop{\rm cov}} \left( {{X_i},{X_j}} \right) + 0 + 0 + {\mathop{\rm cov}} \left( {{Y_i},{Y_j}} \right)\\ = {\mathop{\rm cov}} \left( {{X_i},{X_j}} \right) + {\mathop{\rm cov}} \left( {{Y_i},{Y_j}} \right)\end{array}\)
\(Cov(X + Y) = Cov(X) + Cov(Y)\)
Hence the given statement is proved.