The MSE of an estimator \(\hat \theta \) can be written as,
\({\mathop{\rm MSE}\nolimits} (\hat \theta ) = {\mathop{\rm Var}\nolimits} (\hat \theta ) + {{\mathop{\rm Bias}\nolimits} ^2}\)
But the bias is 0.
Therefore,
\(\begin{array}{c}M.S.E(\hat \theta ) = Var(\hat \theta )\\ = Var\left( { - {{\hat \beta }_0} + {c_1}{{\hat \beta }_1}} \right)\\ = Var\left( {{{\hat \beta }_0}} \right) + Var\left( {{c_1}{{\hat \beta }_1}} \right) - 2Cov\left( {{{\hat \beta }_0},{c_1}{{\hat \beta }_1}} \right)\\ = Var\left( {{{\hat \beta }_0}} \right) + c_1^2Var\left( {{{\hat \beta }_1}} \right) - 2{c_1}Cov\left( {{{\hat \beta }_0},{{\hat \beta }_1}} \right)\end{array}\)
The variances of the estimated parameters \({\hat \beta _0}\) and \({\hat \beta _1}\) are,
\(\begin{array}{l}Var\left( {{{\hat \beta }_0}} \right) = {\sigma ^2}\left( {\frac{1}{n} + \frac{{{{\bar x}^2}}}{{s_x^2}}} \right)\\Var\left( {{{\hat \beta }_1}} \right) = \frac{{{\sigma ^2}}}{{s_x^2}}\end{array}\)
Also, the covariance of \({\hat \beta _0}\) and \({\hat \beta _1}\) is given as,
\(Cov\left( {{{\hat \beta }_0},{{\hat \beta }_1}} \right) = - \frac{{\bar x{\sigma ^2}}}{{s_x^2}}\)
From exercise 12 and 13, the following values are obtained,
\(\begin{array}{l}{\mathop{\rm Var}\nolimits} \left( {{{\hat \beta }_0}} \right) = 0.607{\sigma ^2}\quad \\{\mathop{\rm Var}\nolimits} \left( {{{\hat \beta }_1}} \right) = 0.095{\sigma ^2}\\{\mathop{\rm Cov}\nolimits} \left( {{{\hat \beta }_0},{{\hat \beta }_1}} \right) = - 0.214{\sigma ^2}\end{array}\)
Substituting the values,
\(\begin{array}{c}{{\mathop{\rm MSE}\nolimits} _{\hat \theta }}\left( {{c_1}} \right) = 0.607{\sigma ^2} + c_1^2\left( {0.095{\sigma ^2}} \right) + 2{c_1}\left( {0.214{\sigma ^2}} \right)\\ = \left( {0.095c_1^2 + 0.428{c_1} + 0.607} \right){\sigma ^2}\end{array}\)