Chapter 6: Q4SE (page 357)
Suppose that X is a random variable such that\(E\left( {{X^k}} \right)\)exists and\({\rm P}\left( {X \ge 0} \right) = 1\). Prove that for\(k > 0\)and\(t > 0\),\({\rm P}\left( {X \ge t} \right) \le \frac{{E\left( {{X^k}} \right)}}{{{t^k}}}\)
Short Answer
For k>0 and t>0 \({\rm P}\left( {X \ge t} \right) = \frac{{E\left( {{X^k}} \right)}}{{{t^k}}}\)