Chapter 6: Q4E (page 358)
Let X be a random variable for which \({\bf{E}}\left( {\bf{X}} \right){\bf{ = \mu }}\)and\({\bf{Var}}\left( {\bf{X}} \right){\bf{ = }}{{\bf{\sigma }}^{\bf{2}}}\).Construct a probability distribution for X such that \({\bf{P}}\left( {\left| {{\bf{X - \mu }}} \right| \ge {\bf{3\sigma }}} \right){\bf{ = }}\frac{{\bf{1}}}{{\bf{9}}}\)
Short Answer
X | P(X=x) |
\(\mu - 3\sigma \) | \(\frac{1}{{18}}\) |
\(\mu \) | \(\frac{8}{9}\) |
\(\mu + 3\sigma \) | \(\frac{1}{{18}}\) |
Total | 1 |