Chapter 6: Q21E (page 359)
Let \({X_1},{X_2},...\)be a sequence of i.i.d. random variables having the exponential distribution with parameter 1. Let \({Y_n} = \sum\limits_{i = 1}^n {{X_i}} \)for each \(n = 1,2,...\)
a. For each\(u > 1\), compute the Chernoff bound on \(\Pr \left( {{Y_n} > nu} \right)\).
b. What goes wrong if we try to compute the Chernoff bound when\(u < 1\).
Short Answer
a. The Chernoff bound for \(\Pr \left( {{Y_n} > nu} \right)\) is\({\left[ {u{e^{\left( {1 - u} \right)}}} \right]^n}\).
b. If \(u < 1\), then \(\Pr \left( {X \ge t} \right) \le \mathop {\min }\limits_{x > 0} \;\exp \left( { - st} \right)\psi \left( s \right)\) is minimized over \(s > 0\)near \(s = 0\),
which provides a useless bound of 1 for \(\Pr \left( {{Y_n} > nu} \right)\).