Chapter 6: Q1E (page 374)
Let\({X_1},{X_2},....{X_{30}}\)be independent random variables each having a discrete distribution with p.f.
\(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{4}\;\;\;\;\;\;if\;\;x = 0\;or\;2\\\frac{1}{2}\;\;\;\;\;\;if\;\;x = 1\\0\;\;\;\;\;\;\;otherwise\end{array} \right.\)
Use the central limit theorem and the correction for continuity to approximate the probability that\({X_1} + \cdots + {X_{30}}\)is at most 33.
Short Answer
Approximate value of the probability that \({X_1} + \cdots + {X_{30}}\) is at most 33 is \(0.8169\).