Moment generating function (m.g.f):
Let X be a random variable. For each real number t,
Define \(\psi \left( t \right) = E\left( {{e^{tx}}} \right)\)
The function \(\psi \left( t \right)\) is called the moment generating function of X.
Chernoff Bounds:
Let X be a random variable with moment generating function \(\psi \).
Then, for every real t,
\(\Pr \left( {X \ge t} \right) \le \mathop {\min }\limits_{s > 0} \exp \left( { - st} \right)\psi \left( s \right)\)
This theorem is most useful when X is the sum of the n i.i.d. random variables, each with finite m.g.f. and when t=nufor a large value of n and some fixed n.
To prove that the \(\mathop {\min }\limits_{s > 0} \psi \left( s \right)\exp \left( { - snu} \right)\) equals \({q^n}\) where
\(q = \left[ {p\left( {1 - u} \right) + 1 - p} \right]{\left[ {\frac{{\left( {1 - u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right]^{u + \left( {1 - p} \right)/p}}\)…….. (1)
First, insert the value of \(s = - \log \left[ {\frac{{\left( {1 - u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right]\) into the equation below
\(\Pr \left( {X \ge nu} \right) \le \mathop {\min }\limits_{s > 0} {\left( {\frac{{p\left( {\exp \left[ { - s\left( {1 - p} \right)/p} \right]} \right)}}{{1 - \left( {1 - p} \right)\exp \left( s \right)}}} \right)^n}\exp \left( { - snu} \right)\)
This gives,
\(n\left[ {\log \left( p \right) + \left( {\frac{{1 - p}}{p} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} - \log \left\{ {1 - \frac{{1 - p}}{{\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)}}} \right\}} \right]\)
The last term can be rewritten as
\(\log \left\{ {1 - \frac{{1 - p}}{{\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)}}} \right\} = - \log \left( p \right) + \log \left\{ {\left( {1 + u} \right)p + 1 - p} \right\}\)
The result is then
\(\begin{array}{l}n\left[ {\log \left( p \right) + \left( {\frac{{1 - p}}{p} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} - \log \left( p \right)\log \left\{ {\left( {1 + u} \right)p + 1 - p} \right\}} \right]\\ = n\left[ {\left( {\frac{{1 - p}}{n} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} + \log \left\{ {\left( {1 - u} \right)p + 1 - p} \right\}} \right]\end{array}\)
This is easily recognized that the n times the logarithm of equation (1).