Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Return to Example 6.2.7.

a. Prove that the \({\min _{s > 0}}\psi \left( s \right)\exp \left( { - snu} \right)\) equals \({q^n}\), where q is given in (6.2.16).

b. Prove that \(0 < q < 1\). Hint: First, show that\(0 < q < 1\)if \(u = 0\). Next, let\(x = up + 1 - p\)and show that \(\log \left( q \right)\)is a decreasing function of x.

Short Answer

Expert verified
  1. It is proven thatthe \(\mathop {\min }\limits_{s > 0} \psi \left( s \right)\exp \left( { - snu} \right)\) equals \({q^n}\).
  1. It is proved that\(0 < q < 1\)and log(q) is a decreasing function of x.

Step by step solution

01

Given information

\({X_1},{X_2},...\) be a sequence of i.i.d. geometric random variables with parameter p.

02

(a) Proving that \({\min _{s > 0}}\psi \left( s \right)\exp \left( { - snu} \right) = {q^n}\)

Moment generating function (m.g.f):

Let X be a random variable. For each real number t,

Define \(\psi \left( t \right) = E\left( {{e^{tx}}} \right)\)

The function \(\psi \left( t \right)\) is called the moment generating function of X.

Chernoff Bounds:

Let X be a random variable with moment generating function \(\psi \).

Then, for every real t,

\(\Pr \left( {X \ge t} \right) \le \mathop {\min }\limits_{s > 0} \exp \left( { - st} \right)\psi \left( s \right)\)

This theorem is most useful when X is the sum of the n i.i.d. random variables, each with finite m.g.f. and when t=nufor a large value of n and some fixed n.

To prove that the \(\mathop {\min }\limits_{s > 0} \psi \left( s \right)\exp \left( { - snu} \right)\) equals \({q^n}\) where

\(q = \left[ {p\left( {1 - u} \right) + 1 - p} \right]{\left[ {\frac{{\left( {1 - u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right]^{u + \left( {1 - p} \right)/p}}\)…….. (1)

First, insert the value of \(s = - \log \left[ {\frac{{\left( {1 - u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right]\) into the equation below

\(\Pr \left( {X \ge nu} \right) \le \mathop {\min }\limits_{s > 0} {\left( {\frac{{p\left( {\exp \left[ { - s\left( {1 - p} \right)/p} \right]} \right)}}{{1 - \left( {1 - p} \right)\exp \left( s \right)}}} \right)^n}\exp \left( { - snu} \right)\)

This gives,

\(n\left[ {\log \left( p \right) + \left( {\frac{{1 - p}}{p} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} - \log \left\{ {1 - \frac{{1 - p}}{{\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)}}} \right\}} \right]\)

The last term can be rewritten as

\(\log \left\{ {1 - \frac{{1 - p}}{{\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)}}} \right\} = - \log \left( p \right) + \log \left\{ {\left( {1 + u} \right)p + 1 - p} \right\}\)

The result is then

\(\begin{array}{l}n\left[ {\log \left( p \right) + \left( {\frac{{1 - p}}{p} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} - \log \left( p \right)\log \left\{ {\left( {1 + u} \right)p + 1 - p} \right\}} \right]\\ = n\left[ {\left( {\frac{{1 - p}}{n} + u} \right)\log \left\{ {\frac{{\left( {1 + u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right\} + \log \left\{ {\left( {1 - u} \right)p + 1 - p} \right\}} \right]\end{array}\)

This is easily recognized that the n times the logarithm of equation (1).

03

(b) Proving that \(0 < q < 1\) log (q) is a decreasing function of x

For all u, q is given by \(q = \left[ {p\left( {1 - u} \right) + 1 - p} \right]{\left[ {\frac{{\left( {1 - u} \right)p + 1 - p}}{{up + 1 - p}}\left( {1 - p} \right)} \right]^{u + \left( {1 - p} \right)/p}}\)

For u=0. \(q = {\left( {1 - p} \right)^{\left( {1 - p} \right)/p}}\)

Since,

\(0 < 1 - p < 1\)and \(\frac{{\left( {1 - p} \right)}}{p} > 0\)

Since,

\(0 < q < 1\) when u=0

In general, u, let \(x = p\left( {1 + u} \right) + 1 - p\) and rewrite

\(\log \left( q \right) = \log \left( {p + x} \right) + \frac{{p + x}}{p}\log \frac{{\left( {1 - p} \right)\left( {p + x} \right)}}{x}\)

Since x is a linearly increasing function of u, if it is shown to decrease in x, then q is decreasing in u.

The derivative of \(\log \left( q \right)\)concerning x is

\( - \frac{p}{{x\left( {p + x} \right)}} + \frac{1}{p}\log \frac{{\left( {1 - p} \right)\left( {p + x} \right)}}{x}\)

The first term is negative, and the second term is negative at \(u = 0\left( {x = 1} \right)\)

To be sure that the sum is always negative, examine the second term more closely. The derivative of the second term is

\(\frac{1}{p}\left( {\frac{1}{{p + x}} - \frac{1}{x}} \right) = \frac{{ - 1}}{{x\left( {p + x} \right)}} < 0\)

Hence the derivative is always negative, and q is less than 1 for all u.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free