Chapter 6: Q 8SE (page 375)
Let\(\left\{ {{p_n}} \right\}_{n = 1}^\infty \)be a sequence of numbers such that\(0 < {p_n} < 1\)for all\(n\). Assume that\(\mathop {\lim }\limits_{n \to \infty } {p_n} = p\)with\(0 < p < 1\). Let\({X_n}\)have the binomial distribution with parameters\(k\)and\({p_n}\)for some positive integer\(k\)Prove that\({X_n}\)converges in distribution to the binomial distribution with parameters k and p.
Short Answer
\({X_n}\) Converges in distribution to the binomial distribution with parameters k and p