\(\begin{aligned}{}\Pr \left( {A \cup B \cup C} \right) &= \Pr \left( A \right) + \Pr \left( B \right) + \Pr \left( C \right) - \Pr \left( {A \cap B} \right) - \Pr \left( {B \cap C} \right) - \Pr \left( {C \cap A} \right) + \Pr \left( {A \cap B \cap C} \right)\\5\Pr \left( A \right) &= \Pr \left( A \right) + 2\Pr \left( A \right) + 4\Pr \left( A \right) - 0 - \Pr \left( B \right)\Pr \left( C \right) - \Pr \left( A \right)\Pr \left( C \right) + 0\\5\Pr \left( A \right) &= 7\Pr \left( A \right) - \Pr \left( B \right)\Pr \left( C \right) - \Pr \left( A \right)\Pr \left( C \right)\\5\Pr \left( A \right) &= 7\Pr \left( A \right) - 2\Pr \left( A \right) \times 4\Pr \left( A \right) - \Pr \left( A \right) \times 4\Pr \left( A \right)\\5\Pr \left( A \right) &= 7\Pr \left( A \right) - 12{\left( {\Pr \left( A \right)} \right)^2}\end{aligned}\)
\(\begin{aligned}{}12{\left( {\Pr \left( A \right)} \right)^2} &= 2\Pr \left( A \right)\\6\Pr \left( A \right)& = 1\\\Pr \left( A \right) &= \frac{1}{6}\end{aligned}\)
The probability for event A is 1/6