Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a certain boxAcontains five balls and another boxBcontains 10 balls. One of these two boxes isselected at random and one ball from the selected box is transferred to the other box. If this process of selecting abox at random and transferring one ball from that box to the other box is repeated indefinitely, what is the probability that boxAwill become empty before boxBbecomes empty?

Short Answer

Expert verified

The probability that before box B will become empty, box A will become empty is \(\frac{2}{3}\).

Step by step solution

01

Given information

There are 5 balls in box A and 10 balls in box B.

When box A is selected then one ball from box A is transferred to box B. Similarly the same for box B.

So, here\(i = 5\),\(k = \left( {5 + 10} \right) = 15\) and \(p = \frac{1}{2}\).

02

Compute the probability

Referring to equation 2.4.6 for the equation which is given below,

\({a_i} = \frac{i}{k};i = 1,2,...,k - 1\)

Here,\(a = \frac{5}{{15}} = \frac{1}{3}\)

So, the probability that box B will become empty is\(\frac{1}{3}\).

The probability that at first box A will become empty is

\(\begin{aligned}{}1 - a = 1 - \frac{1}{3}\\ = \frac{2}{3}\end{aligned}\)

Therefore, the probability that before box B will become empty, box A will become empty is \(\frac{2}{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three prisonersA,B, andCon death row know that exactly two of them are going to be executed, but they do not know which two. PrisonerAknows that the jailer will not tell him whether or not he is going to be executed. He, therefore, asks the jailer to tell him the name of one Prisoner other thanAhimself who will be executed. The jailer responds thatBwill be executed. Upon receiving this response, PrisonerAreasons as follows: Before he spoke to the jailer, the probability was \(\frac{2}{3}\) that he would be one of the two prisoners executed. After speaking to the jailer, he knows that either he or PrisonerCwill be the other one to be executed. Hence, the probability that he will be executed is now only \(\frac{1}{2}\). Thus, merely by asking the jailer his question, the Prisoner reduced the probability that he would be executed \(\frac{1}{2}\)because he could go through exactly this same reasoning regardless of which answer the jailer gave. Discuss what is wrong with prisonerA’s reasoning.

Suppose that a box contains five coins and that for each coin there is a different probability that a head will be obtained when the coin is tossed. Let \({{\bf{p}}_{\bf{i}}}\)denote the probability of a head when theith coin is tossed \({\bf{i = }}\left( {{\bf{1, \ldots ,5}}} \right)\) and suppose that \({{\bf{p}}_{\bf{1}}}{\bf{ = 0}}\),\({{\bf{p}}_{\bf{2}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{4}}}\) ,\({{\bf{p}}_{\bf{3}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{2}}}\) ,\({{\bf{p}}_{\bf{4}}}{\bf{ = }}\frac{{\bf{3}}}{{\bf{4}}}\) , and \({{\bf{p}}_{\bf{5}}}{\bf{ = 1}}\).

  1. Suppose that one coin is selected at random from the box and when it is tossed once, a head is obtained. What is the posterior probability that theith coin was selected \({\bf{i = }}\left( {{\bf{1, \ldots ,5}}} \right)\)?
  2. If the same coin were tossed again, what would be the probability of obtaining another head?
  3. If a tail had been obtained on the first toss of the selected coin and the same coin were tossed again, what would be the probability of obtaining a head on the second toss?

If A⊂B with Pr(B) > 0, what is the value of \({\bf{Pr}}\left( {{\bf{A}}|{\bf{B}}} \right)\) ?

Each time a shopper purchases a tube of toothpaste, he chooses either brand A or brand B. Suppose that for each purchase after the first, the probability is 1/3 that he will choose the same brand that he chose on his preceding purchase and the probability is 2/3 that he will switch brands. If he is equally likely to choose either brand A or brand B on his first purchase, what is the probability that both his first and second purchases will be brand A and both his third and fourth purchases will be brand B?

Three studentsA,B, andC,are enrolled in the same class. Suppose thatAattends class 30 percent of the time,Battends class 50 percent of the time, andCattends class 80 percent of the time. If these students attend classindependently of each other, what is (a) the probability that at least one of them will be in class on a particular day and (b) the probability that exactly one of them will be in class on a particular day?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free