Chapter 2: Q8E (page 90)
Suppose that the probability of a head on any toss of a certain coin isp(0<p <1), and suppose that the coin is tossed repeatedly. LetXndenote the total number ofheads that have been obtained on the firstntosses, and letYn=n−Xndenote the total number of tails on the firstntosses. Suppose that the tosses are stopped as soon as a numbernis reached such that eitherXn=Yn+3 orYn=Xn+3. Determine the probability thatXn=Yn+3when the tosses are stopped.
Short Answer
If tosses are stopped the probability that\({X_n} = {Y_n} + 3\)is\(\frac{1}{2}\)