a.
After tossing repeatedly, the first head was obtained on the 4th toss.
It is required to obtain the following probabilities;
\(\Pr \left( {{C_1}\left| {{H_4}} \right.} \right),\Pr \left( {{C_2}\left| {{H_4}} \right.} \right),\Pr \left( {{C_3}\left| {{H_4}} \right.} \right),\Pr \left( {{C_4}\left| {{H_4}} \right.} \right),\Pr \left( {{C_5}\left| {{H_4}} \right.} \right)\)
In general, it is required to calculate the probability of selecting i-th coin, given that the first head obtained on the 4th toss. That is\(\Pr \left( {{C_i}\left| {{H_4}} \right.} \right)\)
So,
\(\begin{aligned}{c}{\bf{Pr}}\left( {{{\bf{C}}_{\bf{i}}}\left| {{{\bf{H}}_{\bf{4}}}} \right.} \right){\bf{ = }}\frac{{{\bf{Pr}}\left( {{{\bf{C}}_{\bf{i}}}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_{\bf{i}}}} \right.} \right)}}{{\sum\limits_{{\bf{j = 1}}}^{\bf{5}} {{\bf{Pr}}\left( {{{\bf{C}}_{\bf{j}}}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_{\bf{j}}}} \right.} \right)} }}\\\frac{{{\bf{Pr}}\left( {{{\bf{C}}_{\bf{i}}}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_{\bf{i}}}} \right.} \right)}}{{{\bf{Pr}}\left( {{{\bf{C}}_1}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_1}} \right.} \right) + {\bf{Pr}}\left( {{{\bf{C}}_2}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_2}} \right.} \right) + ... + {\bf{Pr}}\left( {{{\bf{C}}_5}} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{4}}}\left| {{{\bf{C}}_5}} \right.} \right)}}\\ = \frac{{\frac{1}{5}{{\left( {1 - {p_i}} \right)}^3}{p_i}}}{{\frac{1}{5}\sum\limits_{j = 1}^5 {{{\left( {1 - {p_j}} \right)}^3}{p_j}} }}\\ = \frac{{256{{\left( {1 - {p_i}} \right)}^3}{p_i}}}{{46}}\end{aligned}\)
On substituting the values of probabilities, the following probabilities are obtained for five different coins:
For\(i = 1\),\(\Pr \left( {{C_1}\left| {{H_4}} \right.} \right) = 0\)
For\(i = 2\),\(\begin{aligned}{c}\Pr \left( {{C_2}\left| {{H_4}} \right.} \right) = \frac{{256 \times \frac{{27}}{{256}}}}{{46}}\\ = 0.58695\end{aligned}\)
For\(i = 3\),\(\Pr \left( {{C_3}\left| {{H_4}} \right.} \right) = 0.3478\)
For\(i = 4\),\(\Pr \left( {{C_4}\left| {{H_4}} \right.} \right) = 0.0652\)
For\(i = 5\),\(\Pr \left( {{C_5}\left| {{H_4}} \right.} \right) = 0\)
Thus, we obtain the probabilities of selecting the ith coin when the head is obtained on fourth toss.