\(\Pr \left( {A \cap B \cap C} \right) = 0.04\)
\(\Pr \left( {D|A \cap B} \right) = 0.25\)
\(\Pr \left( B \right) = 4\Pr \left( A \right)\)
So,
\(\begin{aligned}{}\Pr \left( {D|A \cap B} \right) = \frac{{\Pr \left( {D \cap A \cap B} \right)}}{{\Pr \left( {A \cap B} \right)}}\\ \Rightarrow \Pr \left( {A \cap B} \right) = \frac{{\Pr \left( {D \cap A \cap B} \right)}}{{\Pr \left( {D|A \cap B} \right)}}\\ \Rightarrow \Pr \left( {A \cap B} \right) = \frac{{0.04}}{{0.25}}\\ \Rightarrow \Pr \left( {A \cap B} \right) = 0.16\end{aligned}\)
Since we know that the event A and the event B are independent.
So,
\(\begin{aligned}{}\Pr \left( {A \cap B} \right) = \Pr \left( A \right)\Pr \left( B \right)\\0.16 = \Pr \left( A \right) \times 4\Pr \left( A \right)\\4\Pr {\left( A \right)^2} = 0.16\\\Pr \left( A \right) = \sqrt {\frac{{0.16}}{4}} \\\Pr \left( A \right) = 0.1\end{aligned}\)
So,
\(\begin{aligned}{}\Pr \left( {A \cup B} \right) = \Pr \left( A \right) + \Pr \left( B \right) - \Pr \left( {A \cap B} \right)\\ = \Pr \left( A \right) + 4\Pr \left( A \right) - 0.16\\ = 5\Pr \left( A \right) - 0.16\\ = \left( {5 \times 0.1} \right) - 0.16\\ = 0.5 - 0.16\\ = 0.34\end{aligned}\)
Therefore,\(\Pr \left( {A \cup B} \right) = 0.34\)