The probability that the family has at least one boy given that it has atleast one girl is given by
\(1 - probability\,of\,having\,no\,boys\)
It is denoted by,
\(P\left( {B \ge 1\left| {G \ge 1} \right.} \right) = 1 - P\left( {B = 0\left| {G \ge 1} \right.} \right)\)
Now,
\(\begin{aligned}{}P\left( {G \ge 1} \right) = 1 - P\left( {G = 0} \right)\\ = 1 - \frac{1}{{{2^n}}}\end{aligned}\)
Therefore,
\(\begin{aligned}{}1 - P\left( {B = 0\left| {G \ge 1} \right.} \right)& = 1 - \frac{{P\left( {B = 0\left| {G \ge 1} \right.} \right)P\left( {G \ge 1} \right)}}{{P\left( {G \ge 1} \right)}}\\& = 1 - \frac{{P\left( {B = 0 \cap G \ge 1} \right)}}{{P\left( {G \ge 1} \right)}}\\ &= 1 - \frac{{{\textstyle{1 \over {{2^n}}}}}}{{1 - {\textstyle{1 \over {{2^n}}}}}}\\ &= \frac{{1 - {\textstyle{1 \over {{2^{n - 1}}}}}}}{{1 - {\textstyle{1 \over {{2^n}}}}}}\end{aligned}\)
The required probability is
\(P\left( {B \ge 1\left| {G \ge 1} \right.} \right) = \frac{{1 - {\textstyle{1 \over {{2^{n - 1}}}}}}}{{1 - {\textstyle{1 \over {{2^n}}}}}}\).