Chapter 2: Q1E (page 84)
Suppose thatkevents\({{\bf{B}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{B}}_{\bf{k}}}\)form a partition of the sample spaceS. For\({\bf{i = 1 \ldots k}}\), let\(\Pr \left( {{{\bf{B}}_{\bf{i}}}} \right)\)denote the prior probability of\({{\bf{B}}_{\bf{i}}}\). Also, for each eventAsuch that\({\bf{Pr}}\left( {\bf{A}} \right){\bf{ > 0}}\), let\({\bf{Pr}}\left( {{{\bf{B}}_{\bf{i}}}{\bf{|A}}} \right)\)denote the posterior probability of\({{\bf{B}}_{\bf{i}}}\)given that the eventAhas occurred. Prove that if\({\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}{\bf{|A}}} \right){\bf{ < Pr}}\left( {{{\bf{B}}_{\bf{1}}}} \right)\)then\({\bf{Pr}}\left( {{{\bf{B}}_{\bf{i}}}{\bf{|A}}} \right){\bf{ > Pr}}\left( {{{\bf{B}}_{\bf{i}}}} \right)\)for at least one value of i\(\left( {{\bf{i = 2, \ldots ,k}}} \right)\).
Short Answer
our assumption is wrong and conclude that if \(\Pr \left( {{B_1}|A} \right) < \Pr \left( {{B_1}} \right)\) then \(\Pr \left( {{B_i}|A} \right) > \Pr \left( {{B_i}} \right)\) for at least one value of \(i;\left( {i = 2, \ldots ,k} \right)\).