Referring to Eqs. (2.3.4) and Eqs. (2.3.5), we got the probability
\(\begin{aligned}{}{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right){\bf{ = }}\frac{{{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{2}}}\left| {{{\bf{B}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{1}}}} \right.} \right)}}{{{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{2}}}\left| {{{\bf{B}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{1}}}} \right.} \right){\bf{ + Pr}}\left( {{{\bf{B}}_{\bf{2}}}\left| {{{\bf{H}}_{\bf{1}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{2}}}\left| {{{\bf{B}}_{\bf{2}}} \cap {{\bf{H}}_{\bf{1}}}} \right.} \right)}}\\ = \frac{1}{5}\end{aligned}\)
a.
Now the required probability that the selected coin is fair, given that the coin gives another head-on 3rd flip after giving two heads is,
\(\begin{aligned}{}{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}} \cap {{\bf{H}}_{\bf{3}}}} \right.} \right){\bf{ = }}\frac{{{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{3}}}\left| {{{\bf{B}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right)}}{{\left[ \begin{aligned}{}{\bf{Pr}}\left( {{{\bf{B}}_{\bf{1}}}\left| {{{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{3}}}\left| {{{\bf{B}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right){\bf{ + }}\\{\bf{Pr}}\left( {{{\bf{B}}_{\bf{2}}}\left| {{{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right){\bf{Pr}}\left( {{{\bf{H}}_{\bf{3}}}\left| {{{\bf{B}}_{\bf{2}}} \cap {{\bf{H}}_{\bf{1}}} \cap {{\bf{H}}_{\bf{2}}}} \right.} \right)\end{aligned} \right]}}\\ = \frac{{\frac{1}{5} \times \frac{1}{2}}}{{\left( {\frac{1}{5} \times \frac{1}{2}} \right) + \left( {\frac{4}{5} \times \frac{1}{2}} \right)}}\\ = \frac{1}{9}\end{aligned}\)
Thus, the probability is \(\frac{1}{9}\)