The posterior probability that the parents have the genotypes of event\({B_i}\)is\(\Pr \left( {{B_i}\left| E \right.} \right)\).Also, the prior probability is represented by\(P\left( {{B_i}} \right)\).
Thus,
\({\bf{Pr}}\left( {{{\bf{B}}_{\bf{i}}}\left| {\bf{E}} \right.} \right){\bf{ = }}\frac{{{\bf{Pr}}\left( {{{\bf{B}}_{\bf{i}}}} \right){\bf{Pr}}\left( {{\bf{E}}\left| {{{\bf{B}}_{\bf{i}}}} \right.} \right)}}{{{\bf{Pr}}\left( {\bf{E}} \right)}}\)
Now, for the values of\(\left( {i = 1,2,3,4,5,6} \right)\), the probabilities are,
\(\begin{aligned}{c}\Pr \left( {{B_1}\left| E \right.} \right) = \frac{{\frac{1}{{16}} \times 1}}{{\frac{3}{4}}}\\ = \frac{1}{{12}}\\ > P\left( {{B_1}} \right)\end{aligned}\)
Similarly,
\(\begin{aligned}{c}\Pr \left( {{B_2}\left| E \right.} \right) = \frac{{\frac{1}{4} \times 1}}{{\frac{3}{4}}}\\ = \frac{1}{3}\\ > P\left( {{B_2}} \right)\end{aligned}\)
\(\begin{aligned}{c}\Pr \left( {{B_3}\left| E \right.} \right) = \frac{{\frac{1}{8} \times 1}}{{\frac{3}{4}}}\\ = \frac{1}{6}\\ > P\left( {{B_3}} \right)\end{aligned}\)
\(\begin{aligned}{c}\Pr \left( {{B_4}\left| E \right.} \right) = \frac{{\frac{1}{4} \times \frac{3}{4}}}{{\frac{3}{4}}}\\ = \frac{1}{4}\\ = P\left( {{B_4}} \right)\end{aligned}\)
\(\begin{aligned}{c}\Pr \left( {{B_5}\left| E \right.} \right) = \frac{{\frac{1}{4} \times \frac{1}{2}}}{{\frac{3}{4}}}\\ = \frac{1}{6}\\ < P\left( {{B_5}} \right)\end{aligned}\)
\(\begin{aligned}{c}\Pr \left( {{B_6}\left| E \right.} \right) = \frac{{\frac{1}{{16}} \times 0}}{{\frac{3}{4}}}\\ = 0\\ < P\left( {{B_6}} \right)\end{aligned}\)
Thus, on observation, it can be concluded that \({B_5}\) and \({B_6}\) have the posterior probabilities smaller than prior probabilities. That is,\(\Pr \left( {{B_5}\left| E \right.} \right) < \Pr \left( {{B_5}} \right)\) and \(\Pr \left( {{B_6}\left| E \right.} \right) < \Pr \left( {{B_6}} \right)\).