Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solve the inequality algebraically

(x+1)(x+2)(x+3)0

Short Answer

Expert verified

Required solution set is(-,-3][-2,-1]

Step by step solution

01

Step 1. Given information 

we have a given inequality

(x+1)(x+2)(x+3)0

02

Step 2.Finding the zeros 

Zeroes of inequality

f(x)=(x+1)(x+2)(x+3)0

are,

x=-1x=-2x=-3

03

Step 3.Divide the real number line into 4 intervals  

Now we use the zeros to separate the real number line into intervals.

(-,-3)(-3,-2)(-2,-1)(-1,)

04

Step 4.Selecting a test number in each interval  

Now we select a test number in each interval found in Step 3 and evaluate at each number to determine if f(x)=(x+1)(x+2)(x+3)=0

is positive or negative.

In the interval (-,-3) we chose -4, where f isnegative

In the interval (-3,-2)

we chose -2.5 , where f is positive.

In the interval (-2,-1) we chose 1.5 , where f is negative.

In the interval (-1,)

we chose 4 , where f is positive

We know that our required inequality is f(x)0

Here the inequality is strict localid="1646106552197" (or)so we have to include the solutions off(x)=0

in the solution set.

So we want the interval where f is negative or equals to 0.

So required solution set is(-,-3][-2,-1]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free