Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Obtain a graph of the function for the various values of a, b, and c in the following table. Conjecture a relation between the degree of a polynomial function and the number of turning points after completing the table. In the table, a can be 1, 2, or 3; b can be 1, 2, or 3; and c can be 1, 2, 3, or 4.

Short Answer

Expert verified

From the table, we see that the turning point is always less than the degree.

Also, if the number of all zero point is odd then the number of turning points is equal to 2, and for each zero point that is of even multiplicity the number of turning points increases by one.

Step by step solution

01

Step 1. Given Information

We need to Obtain a graph of the function for the various values of a, b, and c in the following table. Conjecture a relation between the degree of a polynomial function and the number of turning points after completing the table. In the table, a can be 1, 2, or 3; b can be 1, 2, or 3; and c can be 1, 2, 3, or 4.

02

Step 2. For a=1,b=1,c=1

fx=x+2xx-2

The degree of the polynomial is degree 3 and the turning point is 2.

03

Step 3. For a=1,b=1,c=2

fx=x+2xx-22

The degree of the polynomial is degree 4 and the turning point is 3.

04

Step 4. For a=1,b=1,c=3

fx=x+2xx-23

The degree of the polynomial is degree 5 and the turning point is 2.

05

Step 5. Forming more polynomials

Continue in this manner, we can construct the table

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free