Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If α+β+γ=180and cotθ=cotα+cotβ+cotγ,0<θ<180

Show thatsin3θ=sin(α-θ)sin(β-θ)sin(γ-θ)

Short Answer

Expert verified

If α+β+γ=180and cotθ=cotα+cotβ+cotγ,0<θ<180

Then

sin(α-θ)=sin2αsinθsinβsinγsin(β-θ)=sin2βsinθsinαsinγsin(γ-θ)=sin2γsinθsinβsinα

On multiplying all equations

sin(α-θ)sin(β-θ)sin(γ-θ)=sin2αsinθsinβsinγ×sin2βsinθsinαsinγ×sin2γsinθsinβsinαsin(α-θ)sin(β-θ)sin(γ-θ)=sin2θ

Step by step solution

01

Step 1. Given data

The given equations are

α+β+γ=180cotθ=cotα+cotβ+cotγ0<θ<180

The equation we need to prove is

sin3θ=sin(α-θ)sin(β-θ)sin(γ-θ)

02

Step 2. Formation of the equation for proof

As cotθ=cotα+cotβ+cotγ

So

cotθ=cotα+cotβ+cotγcotθ-cotα=cotβ+cotγcosθsinθ-cosαsinα=cosβsinβ+cosγsinγcosθsinα-cosαsinθsinθsinα=cosβsinγ+cosγsinβsinβsinγsin(α-θ)sinθsinα=sin(γ+β)sinβsinγandα+β+γ=180β+γ=180-αSosin(α-θ)sinθsinα=sin(180-α)sinβsinγsin(α-θ)sinθsinα=sin(α)sinβsinγsin(α-θ)=sin2αsinθsinβsinγ(i)

Similarly

sin(β-θ)=sin2βsinθsinαsinγ(ii)sin(γ-θ)=sin2γsinθsinβsinα(iii)

03

Step 3. proof

Multiply equation(i),(ii),and(iii)

sin(α-θ)sin(β-θ)sin(γ-θ)=sin2αsinθsinβsinγ×sin2βsinθsinαsinγ×sin2γsinθsinβsinαsin(α-θ)sin(β-θ)sin(γ-θ)=sin2θ

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free