Chapter 14: Q. 17 (page 904) URL copied to clipboard! Now share some education! a function f is defined over an interval a,b(a) Graph f, indicating the area A under f from a to b.(b) Approximate the area A by partitioning a,binto four subintervals of equal length and choosing u as the leftendpoint of each subinterval.(c) Approximate the area A by partitioning a,binto eightsubintervals of equal length and choosing u as the leftendpoint of each subinterval.(d) Express the area A as an integral.(e) Use a graphing utility to approximate the integral.localid="1647079335733" role="math" fx=1x1,5 Short Answer Expert verified (a)(b) The four subinterval are 1,2,2,3,3,4,4,5and the area is 2512.(c) The eight subinterval are 1,32,32,2,2,52,52,3,3,72,72,4,4,92,92,5and the area is 46092520(d) (Area under the curve as an integral is given by∫abf(x)dx=∫151xdxe) Using graphing utility the area found is1.609. Step by step solution 01 Part (a) Step 1. Given fx=1x1,5 02 Part (a) Step 2. Graph 03 Part (b) Step 1. Calculation The area under the curve can be found usingA=b-anfu1+fu2+fu3+fu4whereu1,u2,u3,u4are4equalinterval.nowintervalwillbedecidedbyb-an=5-14=1Therefore1,2,2,3,3,4,4,5aretherespectiveintervals.ApplyingtheformulaforareawegetA=b-anfu1+fu2+fu3+fu4=11+12+13+14=2512 04 Part (c) Step 1. Calculation A=b-anfu1+fu2+fu3+fu4+fu5+fu6+fu7+fu8whereu1,u2,u3,u4,u5,u6,u7,u8are8equalinterval.nowintervalwillbedecidedbyb-an=5-18=12Therefore1,32,32,2,2,52,52,3,3,72,72,4,4,92,92,5aretherespectiveintervals.A=b-anfu1+fu2+fu3+fu4+fu5+fu6+fu7+fu8=121+23+12+25+13+27+14+29=1246091260=46092520 05 Part (d) Step 1. Area in integral form f(x)=x3a,b=1,5∫abf(x)dx=∫151xdx 06 Part (e) Step 1. Area using a graphing utility The area comes out to be∫151xdx=1.609 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!