Chapter 6: Problem 20
If \(\angle \mathrm{A}\) and \(\angle \mathrm{B}\) are both in quadrant I, and \(\sin \mathrm{A}=\frac{4}{5}\) and \(\cos \mathrm{B}=\frac{12}{13},\) evaluate each of the following, a) \(\cos (A-B)\) b) \(\sin (A+B)\) c) cos \(2 \mathrm{A}\) d) sin \(2 \mathrm{A}\)
Short Answer
Expert verified
a) \frac{56}{65}, b) \frac{63}{65}, c) -\frac{7}{25}, d) \frac{24}{25}
Step by step solution
01
Calculate \(\cos \mathrm{A}\)
Given \(\sin \mathrm{A} = \frac{4}{5}\), use the Pythagorean identity \(\sin^2\mathrm{A} + \cos^2\mathrm{A} = 1\).Since \(\sin \mathrm{A} = \frac{4}{5}\), we have \(\sin^2 \mathrm{A} = \left(\frac{4}{5}\right)^2 = \frac{16}{25}\).Thus, \(\cos^2 \mathrm{A} = 1 - \frac{16}{25} = \frac{9}{25}\).As \mathrm{A} is in quadrant I, \(\cos \mathrm{A} = \sqrt{\frac{9}{25}} = \frac{3}{5}\).
02
Calculate \(\sin \mathrm{B}\)
Given \(\cos \mathrm{B} = \frac{12}{13}\), use the Pythagorean identity \(\sin^2 \mathrm{B} + \cos^2 \mathrm{B} = 1\).Since \(\cos \mathrm{B} = \frac{12}{13}\), we have \(\cos^2 \mathrm{B} = \left(\frac{12}{13}\right)^2 = \frac{144}{169}\).Thus, \(\sin^2 \mathrm{B} = 1 - \frac{144}{169} = \frac{25}{169}\).As \mathrm{B} is in quadrant I, \(\sin \mathrm{B} = \sqrt{\frac{25}{169}} = \frac{5}{13}\).
03
Calculate \(\cos (\mathrm{A} - \mathrm{B})\)
Use the formula for the cosine of a difference: \(\cos (\mathrm{A} - \mathrm{B}) = \cos \mathrm{A} \cos \mathrm{B} + \sin \mathrm{A} \sin \mathrm{B}\).Substitute the known values: \(\cos (\mathrm{A} - \mathrm{B}) = \left(\frac{3}{5}\right) \left(\frac{12}{13}\right) + \left(\frac{4}{5}\right) \left(\frac{5}{13}\right)\).Simplify: \(\cos (\mathrm{A} - \mathrm{B}) = \frac{36}{65} + \frac{20}{65} = \frac{56}{65}\).
04
Calculate \(\sin (\mathrm{A} + \mathrm{B})\)
Use the formula for the sine of a sum: \(\sin (\mathrm{A} + \mathrm{B}) = \sin \mathrm{A} \cos \mathrm{B} + \cos \mathrm{A} \sin \mathrm{B}\).Substitute the known values: \(\sin (\mathrm{A} + \mathrm{B}) = \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) + \left(\frac{3}{5}\right) \left(\frac{5}{13}\right)\).Simplify: \(\sin (\mathrm{A} + \mathrm{B}) = \frac{48}{65} + \frac{15}{65} = \frac{63}{65}\).
05
Calculate \(\cos 2\mathrm{A}\)
Use the double angle formula for cosine: \(\cos 2\mathrm{A} = 2 \cos^2 \mathrm{A} - 1\).Substitute the known value of \(\cos \mathrm{A}\): \(\cos 2\mathrm{A} = 2 \left(\frac{3}{5}\right)^2 - 1\).Simplify: \(\cos 2\mathrm{A} = 2 \left(\frac{9}{25}\right) - 1 = \frac{18}{25} - 1 = \frac{18}{25} - \frac{25}{25} = -\frac{7}{25}\).
06
Calculate \(\sin 2\mathrm{A}\)
Use the double angle formula for sine: \(\sin 2\mathrm{A} = 2 \sin \mathrm{A} \cos \mathrm{A}\).Substitute the known values: \(\sin 2\mathrm{A} = 2 \left(\frac{4}{5}\right) \left(\frac{3}{5}\right)\).Simplify: \(\sin 2\mathrm{A} = 2 \left(\frac{12}{25}\right) = \frac{24}{25}\).
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Pythagorean identity
The Pythagorean identity is a fundamental trigonometric concept that states: \ \[ \sin^2\theta + \cos^2\theta = 1 \] \
This identity helps relate the sine and cosine of an angle. If you know one, you can find the other. For example, in the problem, \sin \mathrm{A} = \frac{4}{5}, \ so \[ \sin^2 \mathrm{A} = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] \ Then, you find \cos^2\mathrm{A} \ by rearranging the identity: \[ \cos^2\mathrm{A} = 1 - \sin^2\mathrm{A} = 1 - \frac{16}{25} = \frac{9}{25} \] \ Since \theta \rm{A} is in the first quadrant where cosine is positive, \[ \cos \mathrm{A} = \sqrt{\frac{9}{25}} = \frac{3}{5} \]
This identity helps relate the sine and cosine of an angle. If you know one, you can find the other. For example, in the problem, \sin \mathrm{A} = \frac{4}{5}, \ so \[ \sin^2 \mathrm{A} = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] \ Then, you find \cos^2\mathrm{A} \ by rearranging the identity: \[ \cos^2\mathrm{A} = 1 - \sin^2\mathrm{A} = 1 - \frac{16}{25} = \frac{9}{25} \] \ Since \theta \rm{A} is in the first quadrant where cosine is positive, \[ \cos \mathrm{A} = \sqrt{\frac{9}{25}} = \frac{3}{5} \]
cosine of a difference formula
The cosine of a difference formula is used to find the cosine of the difference of two angles. The formula is given by: \ \[ \cos (\theta - \beta) = \cos \theta \cos \beta + \sin \theta \sin \beta \] \
This is very useful when you know the individual sines and cosines of the angles but not their difference. In the problem, to find \cos (\mathrm{A} - \rm{B}), we use known values: \[ \cos (\mathrm{A} - \rm{B}) = \frac{3}{5} \cdot \frac{12}{13} + \frac{4}{5} \cdot \frac{5}{13} \] \ Simplifying, we get: \[ \cos (\mathrm{A} - \rm{B}) = \frac{36}{65} + \frac{20}{65} = \frac{56}{65} \]
This is very useful when you know the individual sines and cosines of the angles but not their difference. In the problem, to find \cos (\mathrm{A} - \rm{B}), we use known values: \[ \cos (\mathrm{A} - \rm{B}) = \frac{3}{5} \cdot \frac{12}{13} + \frac{4}{5} \cdot \frac{5}{13} \] \ Simplifying, we get: \[ \cos (\mathrm{A} - \rm{B}) = \frac{36}{65} + \frac{20}{65} = \frac{56}{65} \]
sine of a sum formula
The sine of a sum formula helps to find the sine of the sum of two angles. The formula is: \ \[ \sin (\theta + \beta) = \sin \theta \cos \beta + \cos \theta \sin \beta \] \
When both individual angles' sines and cosines are known, this formula simplifies finding their sum. For the given problem, to find \sin (\mathrm{A} + \rm{B}), we use: \[ \sin (\mathrm{A} + \rm{B}) = \frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13} \] \ Simplifying, the result is: \[ \sin (\mathrm{A} + \rm{B}) = \frac{48}{65} + \frac{15}{65} = \frac{63}{65} \]
When both individual angles' sines and cosines are known, this formula simplifies finding their sum. For the given problem, to find \sin (\mathrm{A} + \rm{B}), we use: \[ \sin (\mathrm{A} + \rm{B}) = \frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13} \] \ Simplifying, the result is: \[ \sin (\mathrm{A} + \rm{B}) = \frac{48}{65} + \frac{15}{65} = \frac{63}{65} \]
double angle formulas
Double angle formulas relate the trigonometric functions of double an angle to the functions of the angle itself. There are separate formulas for sine and cosine. \
For cosine, the formula is: \[ \cos 2\theta = 2 \cos^2 \theta - 1 \] \ For sine, it's: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] \
These formulas are used to find the double angles when you know the original angles. In the given exercise, \cos 2\mathrm{A} is calculated by: \[ \cos 2\mathrm{A} = 2 \frac{3}{5}^2 - 1 = 2 \frac{9}{25} - 1 = \frac{18}{25} - \frac{25}{25} = -\frac{7}{25} \] \ To find \sin 2\mathrm{A}, use the provided values: \[ \sin 2\mathrm{A} = 2 \frac{4}{5} \cdot \frac{3}{5} = 2 \frac{12}{25} = \frac{24}{25} \]
For cosine, the formula is: \[ \cos 2\theta = 2 \cos^2 \theta - 1 \] \ For sine, it's: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] \
These formulas are used to find the double angles when you know the original angles. In the given exercise, \cos 2\mathrm{A} is calculated by: \[ \cos 2\mathrm{A} = 2 \frac{3}{5}^2 - 1 = 2 \frac{9}{25} - 1 = \frac{18}{25} - \frac{25}{25} = -\frac{7}{25} \] \ To find \sin 2\mathrm{A}, use the provided values: \[ \sin 2\mathrm{A} = 2 \frac{4}{5} \cdot \frac{3}{5} = 2 \frac{12}{25} = \frac{24}{25} \]