Chapter 5: Problem 7
The graph of \(y=\cos x\) is transformed as described. Determine the values of the parameters \(a, b, c,\) and \(d\) for the transformed function. Write the equation for the transformed function in the form \(y=a \cos b(x-c)+d\). a) vertical stretch by a factor of 3 about the \(x\) -axis, horizontal stretch by a factor of 2 about the \(y\) -axis, translated 2 units to the left and 3 units up b) vertical stretch by a factor of \(\frac{1}{2}\) about the \(x\) -axis, horizontal stretch by a factor of \(\frac{1}{4}\) about the \(y\) -axis, translated 3 units to the right and 5 units down c) vertical stretch by a factor of \(\frac{3}{2}\) about the \(x\) -axis, horizontal stretch by a factor of 3 about the \(y\) -axis, reflected in the \(x\) -axis, translated \(\frac{\pi}{4}\) units to the right and 1 unit down
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.